

Energy Savings Calculations for

ECM 14: Infiltration Reductions

Investment Grade Audit

This page is intentionally left blank.

Putnam Caunty, NY																					
Energy and Demand Savings Summary																					e i
Measure ID:	11																				
Measure Name:	Infiltration Reductions	actions																			
Measure Location:																					
Engineers:																					
Site Name:		Suit	Court	Bruen	Court/812	Main	Golf	100	Gov2	Gov3	Korn	KoehlerSr	PutnamSr	Fam 1808	Hwyt	Hwy2	Hwy3	Bwy4	BOE	Law	Summary
Item	Units	Savines	Savings	Savings	Savings	Savines	Sagars	SHIMS.	Savings	Savines	Savinas	Savings	Saving	Saving	Savings	Styrugs	Santas	Santas	Savines	Savings	
Electricity																					
Energy On-Peak	kWh.	121	00	4)	153	77	169	310	109	32	258	100	66	343	122	-15	121	.81	110	47.	2.476
Energy Off-Peak	kWh																				.0
Energy Total	kws.	121	.00	43)	1(3)	-30	109	310	- 100	-242	258	-100	65	343	83	-43	121	. K1	119	47	2.476
Demand On-Peak, Monthly	kw.																		1		.000
Demand On-Peak, Annual	kW																				0.0
Demand Off-Peak, Monthly	kw.																				0.0
Demand Off-Peak, Annual	kW.																				070
Fossil Fuel																					0
Natural Ga+(NG)	CCI	301	328			565			707		798	630		1990					256	210	4,610
Liquid Propane Gas (LPG)	Gallons										3								-	-	. 0
Steam	Miles																				0
Fuel Oil, 12	Gallons			175	290		333	160		- 16	J		162		661	133	57/3	281	21	1	7,977
Tuel Oil, 84	Gallons									-											- 0 -
Fuel Oil, #6	Gallons										7								1	-	0
Solar Value Stack	35																				- 0 -
Water																			12	3 3	0
Water Savings	KGallonn					1															. 0
Sewer																					0
Sewer Savings,	kGallonn																				0

Page 1 of 20

Putnam County, NY Sheriff's Department/Correctional Facility Infiltration Reductions

TMY-3 Weat	TMY 3 Weather Data for Danlmey, CT	Danlmry, CT						Operating Hunra	11.5			Savience								
Ands. Temp Bis deg. V	Asv Temp	M.C.W.IF	M.C. Enthelity Bullens	Of alk Hours	09-16 Hours	(7-24 Lleurs	Potal Bin Hours	Ose Ose Park	UnOse On- Peak Hrs.	Unition On- Goo Off-Peak Peak Lits. On-	Unocoott- Peak His	Total Crack, Area (R ²)	Average Wind Speed (MPR)	Infiltration Plow Rate (CPM)	Oss Hesting Cooling Savings (MBH)	Dather Hennig Cooling Salvago (MBH)	Occ. Cooling Savings (MMBIU)	UnOse Cooling Savings (MMBTU)	Occ. Healing Savings (MMETU)	UnOce Heating Saturgs (MMBTIT)
1	8	Ų.	D	3	A	9	11	1	5	¥	7	M	Z	0	d	0	Я	s	1	0
Cooling																				
105 to 110	107.5	0,0	0.0	0	0	.0.	. 0	0	.00	0	0	1.0	10.0	210	. 8	8	0	.0		
100 to 105	102.5	0.0	0.0	0	- 0	0	0	- 0	0	0	0	1.00	10.0	210	7	1	- 0	0		
95 to 100	97.5	0.0	0.0	0	0	0	0	0	0	0	0	1.0	10.0	210	9	9	0	0		
- 56 m 06	92.5	762	0.0	0	17		- 10	61	0	0	0	3.0	10.0	210		w	0	0		
X5 to 90.	87.5	73.2	0.0	000	100	13	93	93		0	9	370	10.0	.210:	7	7	0	- 00		
- 80 to 85	82.5	60.5	0.0	*	167	. 50	225	225	0	- 0	.0	- 0.7	0.01	210	2	7	- 0	0		
75 (0.80	77.3	63.3	0.0	345	216	108	350	359	0	0	.0	1/1	10.0	210	-1	-	.0	0		
70 10 75	72.5	62.4	0'0	83	267	174	524	524	0	0	.0.	- 07	10,0	210	0	0'	0	0		
65 to 70	67.5	. 39.5	0.0	. 221	316	261	798	798	0	- 0	. 0	1.0	10.0	210	0	.0	0	0		
60 m 05	62.5	54.0	13:43	270	280	344	912	.012	- 0	- 0	0	370	10.00	210	-00	- 13	0	- 0		
Heating																				
. 35 to 60	57.5	18.4	0.0	287	2,18	295	830	830	0	0.	.0	3.0	7.0	141	Ć4	1			2	.0.
50 (0.55	52.5	41.8	0.0	280	288	30	879	879	- 0	0	.0	1.0	7.0	147	. 3	3			3	. 0
45 10 50	47.5	41.5	0.0	201	891	242	701	701	.0	0	0	1.0	7.0	147		4			T	0
40 0 45	42.5	38.0	0.0	255	212	237	208	703	. 0	. 0.	0	3.00	- 20	-147	1.00	- 4				.0
35 to 40	37.5	33.3	0.0	330	192	244	766	766	0	0.	0	3.0	1.0	147	. 2	5			9.	0
30 to 35	32.5	29,6	0.0	236	163	248	547	. 647	.0	0	0	1.0	7.0	147	· B	. 9			5	0
2540.30	27.3	34.1	0.0	200	56	132	433	433	0	- 0 -	0	1.0	7.0	147	- 4					000
201025	22.5	21.0	0'0	150	89	- 20	306	306	0	0	0	1.0	7.0	147	30	8			16	0
15 to 20	17.5	16.9	970	29	15	73.	161	161	0	. 0	0	3.0	7.0	147	9	19			F)	0
10 to 15	12.5	10.5	0.0	45	2.1	- 571	150	180	0	0	0	3.00	7.0	147	6	15			2	. 0
- 51010 -	7.5	4.9	0.0	- 53	- 20	- 25	110	110	0	- 0	.0	- 67	7.0	147	10.	10				.0
0.003	2.5	6.1	0.0	38	9	31	×2	-88	0	. 0	-0	1.0	52	147	- 11	11			7	.0:
5 (0.0)	(2.5)	0.0	0.0	2.4	0	(B)	2.5	2.5	0	0	.0	1.0	7.0	147	-11	- 11			0	.0
-10 to -5	(52)	0.0	0.0	3	0	0	3	3	- 0	. 0	0	3.0	2.00	147	12	- 17			. 0	. 0
-13 in -10	(12.5)	0.0	0.0	0.	.0	0	- (E-	0	0	. 0	0	977	- 2.0	147	13.	57			- 10	0
-2010-15	(17.5)	0'0	0.0	0	.0.	0	. 0.	0	0	. 0.	.0	1.0	1.0	147	- 14	19				0
-25 to -30	(22.5)	0.0	0.0	0	0.	- 0	. 0	0	0	0.	-0-	1.0	7.0	241	15	21			0.	.0.
				3,020	2.920	2.9M	8.760	8,760	0	0	0							0	. 07	0

Cell Ref	Comment
N-H	TMV-3 Weather Data for Daubury, CT
1.1	Overpied Treats as per the RFP data
W	Total Crack area of windows and doors
z	Asseringe wind speed during the coulding and heating sonsons
0	= 1 col M 1x 1 col N 1x 5286 = 60 x P70
Á	= 1.08 x [col O] x ([col B] = 076] = 1000 cooling, 1.08 x [col O] x (Q76 − [col B]) = 1000 heating
ò	- 1.08 s.[col O [n (1 col B] - O77) + 1000 confing. 1.08 x [col O] s.(Q77 - [col B]) = 1000 bening.
×	[col P] x (col I + col K 1) + 1,000 = P68 x P69
s	col(Q x (cold + red (1) + 1,000 + P68 x P69
-	FootP13xC[ool1] FoolK13 = 1,000 P67
1	col/C x (col/J = col/L 1 + L 000 = P67

Visimptions:	Value	Unit	CELL	Description
			REF	
.0	0	0	P43	00'0
Jouble Door - Sides, Top, Sweep, Center(UT)		(UE)	P44	Rear Sheriffs Office Door
Replace Threshold (UT)	1	(0.0)	PAS	Rear Sheriffs Office Door
Joulite Door - Sweep, Center (UT)	C.	2 (UD)	P46	Front Entry Doors.
Single Door - Sides, Top, Sweep (UT)	3	(UT)	P47	Side Entrançe Doors
0	0	0	8Fd	0
0	0	00	64d	0
0	0	.00	P50	0
0	0	00	PSI	0
0	0	0	P52	0
0	0	0.0	PS3	0.
0	0	0	P54	0
0	0	00	P55	.0.
0	0	0	P56	0
0	0	0	P57	0
0	0	. 0	PS8	. 0
0	0	0.0	P59	- 00
0	0	0.0	09d	0
0	0	00	194	0
0	0	00	P62	.0
0	0	0.0	P63	. 0
-0-	0	0.0	P64	-0.
State Crack Area	900	375	990	Combination of all Types
Austing Boiler Plant Efficiency	70.1%		29d	
Ansting Cooling Plant Efficiency	3.52	cop	89d	
Verconi Bailding Cosled	<100.0%		69d	
Werngo Winter Wind Speed	7.0	7.0 MPH	P70	
Average Summer Wind Speed	0.01	10.0 MPH	12d	
Couch Avers Wardward Diversity	25.0%		P72	

the same states transmission - Albe and	Mernymeathin in	r EMS			
	Cooling		Healing		Deartiption
paining	72.0	920	1702	920	average temperature for all areas
Manned	72.0	140	0.07	077	

Page 2 of 20

Putnam County, NY New Putnam County Courthouse Infiltration Reduction

TMY-3 Wead	TMY-3 Weather Data for Dantuey, CT	Dantiney, CT.						Operating Hours	SIR		Ĩ	Savings								
Amb. Temp	AveTemp	MCWR	M.C. Enthalpy	di-one filomen	(Labb Hanne Od, let House, 19,534 Haire	P. C. Marie	Yearl Bire	Over One Peak	Uniting On-	Oce 00-Pwik Unitee 00-		ook o	Average Wind Speed	Tow Rate	Occ. Heating Cooling Savings	UnDoc Heating Cealing Savings	Oce Cooling Savings	Unicke Cooling Savings	Oce Heating Savings	UnOce Besting Savings
A A	2	-	B	4	A	2	11	-	1	×	1	AL.	×	0	ь	0	R	S	T-100000	1
Cooling																				
105 to 110	107.5	0.0	00	0	0	0	0	0	.0.	0	0	1.2	10.0	155	9.	9	0	0		
100 to 105	102.5	9.0	0.0	- 0	0	0	0	0	0	0	000	1.2	10:0	155		3	0	- 0	1	
95 to 100	87.8	0.0	000	-0	0	9	- 00	0	0	0	0	1.2	10.0	155	7		0	0		
90 to 95	92.5	76.2	0.0	- 0	17	+	10	- 10	0	0	0	1.2	10.0	155	1	3	0	0		
85 to 90	87.5	73.2	0.00	-0	-08	.13	-93	93	- 30	- 00	5	3.2	10.0	155	141	3	0	0.		
- 80 to 85	82.5	- 603	000	8	167	. 50.	. 225	223	0	- 0	.0	1.2	10.0	155	. 2	61	. 0	0	7	
75 to 80	77.5	63.3	0.0	35	216	108	350	359	0	0	0	1.2	10.0	155		1	.0	. 0		
701075	72.5	62.4	0.0	83	. 267	174	524	524	0	. 0	.0	1.2	10.01	155	- 0	0	.0	. 0		
65 to 70	67.5	505	00	221	316	261	798	798	. 0	- 0	.0	1.2	10.0	155	0	- 0	.0	0		
60 to 65	62.5	54.0	- 0.0	270	280	- ##	012	-012	- 0	- 10	0	1.2	10:00	155	- 0	0.	0	- 0		
Heating																				
. 35 to 60	57.5	48.4	0.0	287	248	295	830:	830	0	0	.0	1.2	7.0	601	2	. 2			2	.0.
50 to 55	52.5	14.8	0.0	280	288	311	879	879	0	0	.0.	1.2	2.0	109	. 3	13			3	-0
-45 to 50	47.5	41.5	000	791	168	242	701	101	0	0	0	1.2	7.0	109		3			. 3	0
40 to 45	423	38.0	0.0	335	212	237	764	704	-0	.0.	.0	1.2	7.0	100	-10-	4			1.0	0
35 to 40	37.5	33.3	0.0	330	192	244	766	766	0	0.	0	1.2	7.0	109	1.9.					.0
30 to 35	32.5	29.6	0.0	236	163	248	647	647	.0.	0	0	1.2	7.0	109		. 5			*	0
254) 30	27.5	24.1	0.0	206		(32)	433	433	0	0	0	1.2	7.0	109	· · · · · · ·				3	0
2010.25	22.5	21.6	0.00	150	89	79.	306	306	0	0	0	1.2	7.0	1091	9	9				.0
15 to 20	17.5	16.9	0.0	19	. 51	73.	161	161	.0	0.	0	1.2	7.0	109		7				.0
10 to 15	12.5	10.5	0.00	45	57	433	150	150	- 0	0	. 0	1.2	7.0	601	7	7			. 2	.0
5 to 10	7.5	6.4	0.0	- 33	20	37	110	011	0	. 0	0	1.2	7,0	109		*			1 -1	. 0
0.003	2.5	61.	0.0	38	. 9	21	契	- 58	0	. 0	.0	1.2	7.0	109	8.		-		10 - 10 Post 10	- 0.
-5100	(2.5)	0.0	0.0	24	0	100	55	25	0	0	.0:	1.2	7.0	1001	6	6			0	. 0
-10 to -5	(7.5)	0.0	0.0	.3	.0	0	3	3	0	. 0	0	1.2	7.0	109	10					0
-15 to -10	(12.5)	-0.0	10.0	. 0	-00-	-0	- 0	.0	-0-	. 10	-0.	3.2	7.0	109	-10-	10.			. 0	0
-20 to -15	(17.5)	0.0	0.0	.0.	.0.	0	. 0.	.0.	.0	.0	.0	1.2	7.0	109	- 11	11 .			. 0	. 0
-25 to -30	(22.5)	0.0	0.0	0	.0	0	. 0	.0	0	0	.00	1.2	7.0	109	11	11			. 0	0
				2.920	2,920	2,920	8,760	8.760	0	0	0		Ĭ				0 .	.0	12	0
											1									

Cell Ref.	Comment
V-III	TMY-3 Weather Data for Dailbury, CT
1:1	Okcipied hours us per the RFP dutin
×	Total Crack area of windows and doors
×	Avverage ward speed during the exoling and busing seasons
0.	- I col M 1x [col N 1x 5286 = 60 x P70
.de	-1.08 x [col/O] x ([col/B] x O76) = 1000 cooling, L/18 x [col/O] x (Q76 - [col/B]) = 1000 leating
0	- 1.08 « out O s (col B - 077) = 1000 uniting. 1.08 » col O s (Q77 - out B) = 1000 feating.
R	[sof P x (sof I - sol K) - 1,000 - 168 x Peg
M	Test O x (Leel J Leel L 1) = 1,000 + P68 x P69:
4	[sof P] x ([sulf] = [sol R.]) = 1,000 + P67
9	[Fool (2] x (Fool J F Fool L, 13 = 1,000 = 167

Assumptions:	Value	Unit	CELL	Description
			KLD	
Antble Door - Sides, Try. Sweep, Center (1	1.1	(III)	P43	Exterior Dinns
Jouble Door - Sweep, Center (UT)	ei	2(UT)	P44	Extende Doors
Single Door - Sides, Tup. Sweep (UT)	р	(0.0)	PAS	Extense Done
Single Door - Sides, Top, Sweep (LT)		(111)	P46	Interior Stainvell Donn.
Roll-Up Door Weather Strip - Sides, Top, II		(III)	P47	Exterior Garage Door
			and	100
0.00	0 0		600	0 10
	0.00		ne.i	
- 00	0		151	.0
-0:	0		152	-0
-0	0		153	.0
0	0	0	PST	0
.0.	0	0	P55	.0
	0		- PSG	
.0	0	0	P57	0
.0	0	0	854	0
- 0	0.00		6%d	0
0.	0	0	1960	0
0	0	9	194	0
0	0	. 0	P62	0
.0	0.	0.0	1963	.0
-0	0	4)	184	- 0
Data Crash Asses	51.1	.45	990	Combination of all Torse
Systime Boiler Plant Efficiency	70.0%		190	
Systing Cooling Plant Efficiency	3.52	COP	89d	
Percent Building Ciroled	100.05		694	
Average Winker Wind Spood	7.0	7.0 MPH	P76	
Average Summer Wind Speed	10.0	MPH	171	
Truck Area Windourd Diversity	15.054		172	

Average Space Temperatu	res - After Impl	lementalium n	CENE		
	Cooling		Honning		Description
paninaco	72.0	920	24.0	910	average femperature for all areas
Interspied	72,0	017	74,0	077	

Page 3 of 20

TMV-3 Weath	TAY-3 Weather Data for Daibury, U.T.	Manhury, CT						Operating Hours	ans		ĺ	Savings								
Auth Temp Min deg P	Ave Teemp deg. F	M.E.W.II.	M.C. Enfolipe Barlinis	61-08 Homs	OS-CO-Disease,	17-24 flass	Total Bus Bans	Ove-Om-Peak His.	UnOverna-	Oce officials	Use to define	Total Crick Aven.07)	Average backbrands (MIM)	Mültemen Flöw Rate (CPM)	Ox. Heating Cooling Secure (AIIII)	UnOse Heating Cooling Sar mes (MIIII)	Occ. Civiling Savings (MMHITU)	Untkp. Cavling Savings (MMIRTU)	Gec. Hasting Sayuest (MMITTV)	Under Heating Saturns (MMITITE)
V	B		q	3	4	9	Н	-		¥	1.	N	N.	0	P	0	В	5	1	0
Cooling							1													
105 16.110	. 107.5	0.0	0.0	00	0	ν .	. 0.	0	0	- 00	- 10	0.00	1000	141	- 6		0	. 0.	_	
100 to 105	102.5	0.0	0.0	- 0	0	0	0	0	. 0	. 0	0	1.1	10:0	[4]	-	5	0	0		
95 for 100	97.5	0.0	0.0	- 0	0'	-0		0	- 0.	- 0	0	1.1	10.00	141	- 4		- 0	0		-
904095	92.5	76.2	0.0	. 0	-17	2	- 16	12	7	. 0	.0	1.1	10,0	141	· ·	. 3	. 0	.0		
85 10 90	87.5	73.2	0.0.	- 00	300	- 03	93	19	32	- 00	-	1.1	1000	141	. 2			- 00		
80 to 85	82.5	5'69	0.0	8	167	50	225	147	- 28	- 0	0	1.1	10.0	141		A	0	- 0		
75 to 80	17.5	653	0.0	.35	216	108	159	235	124	- 00:-	0	- 13	10.0	141		× 0.000		0		0.0
701075	. 12.5	624	0.0	. 83	267	174	524	343	181	. 0	.0	- 14-	10,0	141	. 0	- 0				
65 to 70	67.3	89.5	0.0	221	310	261	708	523	270	- 00	- 11	10.00	10.0	140		.00		- 00	-	
60 16 65	62.5	54.9	-0.0	279	289	344	516	597	315	0	.0	1.1	10.0	141	. 0	- 0	- 0	. 0		
Brating	1			0	1	1			1				100							
55-40-60	57.5	48.4	0.0	287	248	205	830	543	281	0.	.0.	-13	1,0,7	66		- 3			T	0
50 m 55	- 12.8	44.8.	0.0.	280	78K	31)	628	- 576	303	- 00	(1)	0.00	7.00	66	. 2					- 3E
45 10.50	47.5	41.5	0.0	391	168	242	201	459	242	.0	.0	14 1	7.0	.66	3.	7			- 4	1
40 to 45	42.5	38.0	0.0	235	212	137	704	1991	243		0	- 13	7.0	66	3.	3:			2	1
35-40-40	37.5	33.3	0.0	330	192	244	766	502	264	. 0	0	- 14 -	2,0	. 66	7	. 3				4
30.111.35	32.5	29.6	.0.0.	236	163	248	547	121	223	- 000	- 11	177	738	66	- 4	- OF	+	-	2.	
251030	27.5	341	0.0	206	- 98	132	433	254	146	. 0	.0	14	7.0	- 66		4			- 1	1
20 to 25	. 22.5	21.6	0.0	159	68	2.0	306	200	106	0:-	0	- (1)	7.0	66		- 8			200	3
15 to 20	17.5	16.9	0.0	29	- 51	13	101	125	. 60	. 0		10	1.0	-00	- 9:	. 8			1	0
- 10 to 15	12.5	.10.5	0.0	45	- 25	幹	150	- 30K	- 25	00	- 0.	CC	7:10	- 66	. 0	- 9	100		T	
5.66.10	7.5	6.A	0.0	- 53	30	- 37	110	7.2	38 -	. 0	.0.	-43	7,0	- 66	-	9			7	- 0
0.005	2.3	64	0.0	- 98	9	17	388	96	2.0	0	0	1.1	7.0	66		2	100		1	. 0
-3100	(2.3)	00	0.0	**	0		25	. 16	6	0	.0	1.1	2,0	-66	8	s			. 0	0
-100-5	(2.2)	0.0	.0.0	3	0	00	3		3 1	- 00	- #	- (3)	7.0	66	×				0	. 0
-+15:10-10	- (12.5) -	0.0	- 00		-0	. 0	0	- 0	0	0	.0.	1.1	7.0	-66		- 6			.0	-0
-2049-15	(17.5)	0.0	0.0	0	.0.	Ω	701	0	- 0 -	0	-0	1.1	7:0	66	10	19		7	.0	0
-25-10-20	(22.5)	-00	0.0		. 0	0	0	.0	. 0	0	.0	1.1	2.0	-66	101	- Io			0	0
				2951	1.020	2,920	8,760z	3,736	3,024	· O	9						0	.0.	17	*

Cinnment
TAY'S Worther Data for Daibury, CT.
Occupied flowing his per the RFP data
Total Chiek area of windows and deers
Average with speed during the cooling and heating seasons
= [col M] x [col X] x \$226 + 60 x P70
= 1.08 × [col O] × ([col B] + O7b) = 1000 cooling, 1.08 × [col O] × (Q76 - [col B]) = 1000 lisating
- 1/08 x [ool O] x [ool B] - 077) + 1000 cooling, 1.08 x [ool O] x [O77 - [ool B]) + 1000 beating
col P X (col I col K) = 1,000 = P68 x P69
[orl Q s ([orl J] = [orl L]) = 1,000 = 968 x P69
[col P] X(col I) = [col K]) = 1:000 = P67
Lead O13x(Led J1 = Led L13 = L000 = P67

Assumptions:	Value	Luit	CELL	Description
			REF	
Single Doce - Side. Top. Sweep (TT)	5	(tp)	P43	Exterior Exers
Double Divor - Sides, Sweep, Canter (UT)	FI	(LT)	P44	Exterior Divass
.0	0	-0	51d	0
0	00	0	P46	0
- 0	0	.0	P47	0
	o	0	F-48	0
0	0	0	P49	0
	00	0	054	0
0	0.0	.0	154	0
U	0	0	P52	0
0	0 0	-0	PS3	0
0	0 0	0	P54	0
0	0	0	95d	0
u u	0	0	95d	0
0	0	-0	15d	0
. 0	0	0	PSN	0
0	0	.0	fold .	0
u u	0.0	0	09d	0
.0	0	-0	19d	0
0	0 0	- 0	P62	0
0	0.0	.0	P63	0
n	0	0	P64	0
Total Crick Area	48 101	48	99d	Combination of all Types
Existing Boiler Plant Efficiency	79,0%		L94	
Existing Cooling Plant Efficiency	332	COP	89d	
Percent Building Creded	60.00		69d	
Average Winter Wind Speed	7.0	7.9 MPH.	P70	
Average Suntmor Wind Speed	10.0	10.0 MPH.	144	
Track Area Windward Diversity	15.0%		P72	

Cooling Hotating Description 0ppdf 726 726 720 076 average impending lie all areas Occupand 72.0 077 68.0 077 average impending lie all areas	erage Space Temp	eratures - After Impl	ementation o	CEMS		
076 720		Cooling		House		Description
022 200	patino	72.0	920	72.0	920	average temperature for all areas.
	Occupred	720	-017	68.0	110	

TMY 3 Weath	TMY-3 Weather Data for Banluny, CT	antine (')						Omeratine Hours	100		ľ	Savinne								
	The Paris In a							of Summer and or				2811111					I			
Amb. Temp Axv-Temp Bin deg. F. deg. F.	Ave Temp deg. F	M.C.W.R.	M.C. Eathalpy Dtu-Bma	61-0% Hours	09-16 Hours	17-24 Hears	Total Bin Eleary	Oce DrePeak Hee	Unitive On-	Occ 00-Peak	UnOse Off- Peak Hrs	Total Crack Area (ft ²)	Average Wind Speed (MPH)	Trow Rate (CFM)	Obc. Heating Cooling Savings (MBH)	UnOcc Heating Cealing Savings (MBH)	Occ Cooling Sovings (MMBTT)	Unither Cooling Savings (MMBTU)	Occ. Heating Savings (MMBTU)	UnOce Resing Savings (MMBTU)
~	Ш	Ų	B	ы	A	5	Ш	-	-	×	T.	П	×	0	Ь	0	×	×	1	2
Cooling																				
105 to 110	107.5	0'0	00	0	0	0	0	0	.0	0	0	1.0	10,0	226	6	6	0	.0		
100 to 105	102.5	0.0	0.0	0	0	0	0	0	0	0	.00	1.40	10:0	.226	- 4	7	0	- 0	7	
95 to 100	82.8	0.0	0.0	0	0	9	- 0	0	0	0	0	1.0	10.0	220	9	٥	0	0		
90 to 95	92.5	76.2	0.0	0	17	1	10	12	- 1	0	0	3.0	10.0	226	vi	50	0	0		
85 to 90	87.5	73.2	0.00	.0	-08	.13	93.	.10	32	- 00	0	1.00	10:0:	226	4	*	0	.0		
- 80 to 85	82.5	60.5	000	8	167	. 50.	225	147	. 78	0	0	- 07	10.0	226		3	. 0	.0		
75 to 80	77.3	63.3	0.0	35	216	108	350	235	124	0	0	1.0	10.0	226	-	1	0	. 0		
701075	72.5	62.4	0'0	83	267	174	524	343	181	0	0	1.0	10.01	226	0	0	0	0		
65 to 70	67.5	59.5	0'0	221	376	261	798	523	276	0	.0	1.0	10.0	226	0	- 0	0	0		
60 to 65	62.3	34.0	0.00	270	280	共	1012	507	315	- 0.	0	374	10:0	226	- 0	0.	0	- 0		
Heating																				
. 35 to 60	57.5	48.4	0.0	287	248	295	830	513	287	0	.0	3.0	7.0	158	e	77			5	-
S0 to 55	523	-14.8	0.0	280	288	311	628	576	303	0	- 0	1.0	.7.0	158	3.	*			2	
-45 to 50	47.5	41.5	0'0	791	168	242	701	459	242	0	0	1.0	7.0	158	7	4				1
40 to 45	42.9	38.0	0.0	335	212	237	704	461	343	- 0	0	310	. 02	158					3	()
35 to 40	37.5	33.3	0.0	330	192	244	992	502	364	0	0	1.0	7.0	158	9	9			9	- 27
30 to 35	32.5	29.6	0'0	236	163	248	547	424	223	0	0	1.0	0.2	158	. p	- p			4	ri.
25 to 30	27.5	24.1	0.0	206	105	132	433	284	149	0	.0	1.00	7.0	158	- 4				. 3	- 1
201025	22.5	21.6	-000	150	89	79	306	200	901	0	0	1.0	7.0	158	00	80			2	
15 to 20	17.9	16.9	0.0	19	. 51	73.	161	125	999	0.	0	3.0	7.0	158	6	- 6			16	- 17
10.00 15	12.5	5:01	000	145	57	145	150	X6	52	0	n n	1.0	7.0	158	- 01	10.			- 8	
5 to 10	7.5	6.4	0.0	53	20	37	110	- 72	38	0	0	- 10	7,0	158	10	111				-1
0.003	235	61	0.0	385	9	. 21	88	- 36	20	0	.0	170	. 2.0	158	12	12			1	- 0
510.0	(2.5)	0.0	0.0	24	0	4	35	36	6.	0	.0	1.0	7.0	158	12	12			0	0
- 10 to -5	(7.5)	0.0	0.0	.3	0	0	3	e)	-	0	0	3.0	7.0	158	13	13			. 0	0
-15 nr -10	(12.5)-	-0.0	- 10.03	0	-0.	0	0	0	- 0	.0	ŭ,	377	. 2.0	138.	7	14			0	0
-20 to -15	(17.5)	0'0	0.0	-0.	-0-	0	. 0	0	0	.0.	0	3.0	7.0	158	- 115	15 .			. 0 .	0
-25 to -30	(22.5)	0.0	0.0	0	.0	0	. 0	.0	- 0	0	.0	1.0	0.2.	158	16	16			0	.0
				2.920	2,920	2,920	8,760	5,736	3.028	0	0		Ž,				0	-0	26	2

Cell Ref.	Comment
N-III	TMY-3 Weather Data for Darbury, CT
7	Overpied hours us per the RFP duta
Σ	Total Crack area of windows and doors
×	Average wind speed during the cooling and beating seasons.
0	pot M x cot N x 3286 60 x P70
2	= 1.08 x col O x (col B - O76) = 1000 cooling. Lilk x col O x (Q76 - col B) = 1000 heating
o	= 1.08 x col O x (col B - O77) = 1000 cooling. Lilk x col O v (Q77 - col B) = 1000 beating
H	[cold P x C cold = col K) = ,000 = 198 x, Port
s	cold
1	[ted P [A C [and T] = [and K]) = 1,000 = 1967
n	col O x (col J - col J) = 1,000 - 1967

Assumptions:	Value	Linit	CELL	Description
			REF	
Buible Door - Sweep, Center (177)	20	(111)	P43	Exterior Dynns
Single Door - Sides, Top, Sweep (UT)	P	(III)	1744	Exterior Doors
Double Hung Window Weathertzation (ET)	34	(0.0)	145	World Double Hung Windows
0	0	, x	974	
0	0		107	.0
0	0	0	148	.0
U	0	1	- D49	0
0	0	1	DS0	0
-0	0	. x	181	0
0	0		P52	0
0.	0		P53	.0
	0	×	152	.0
.0	0		P55	0
- 0	0		156	- 0
.0	00		P57	.0
.0.	0		PS8	0
	0	×	68d	.0
.0	0	0	P60	. 0
.0	0		1961	.0-
	0.00	×	1962	.0
0	00		1963	- 0
0	0		1964	.0.
Foul Crack Avea	TOT	SE	994	Combination of all Types
Existing Boiler Plant Efficiency	75.0%		1967	
Existing Cooling Plant Efficiency	293 COP	- 40C	89d	
Percent Building Coaled	30.056		69d	
Average Winter Wind Speed	7.0	7.0 MPII	P70	
Average Summer Wind Speed	10.0 MPH	MPH	124	
Crack Area Windward Diversity	25,050		P72	

details observed the	eranges - viter units	CHICALDINA .	202		
	Cooling		Heating		Description
paninos	72.0	940	- 2002	OTA	average temperature for all areas
#Chesapiest	72.0	220	- 70.0	. 077	

Page 5 of 20

Putnam County, NY 121 Main Street Infiltration Reduction

TMY-3 Wead	TMY-3 Weather Data for Danfours, CT	Pantiney, C'I						Omerating Hours	Since			Savinee								
																Datago				
Amb. Temp	Anth Temp Ave Temp	MCWA	M.C. Earthalpy	A) ON Home	100	- Artiful I	Youl Bir	Ocy On-Peak	United the	Occ Off-Pask	Unitee 00-	Total Crack	Average Wind Speed	Trow Rate	Ope. Heating Cooling Savings	Heating Cealing Savings	Obe Cooling Sovings	Unither Cooling Savings	Occ. Heating Savings	UnOce Besting Savings
A A	1 12	300	D. D.	A Tribina	A		II	-	J.	1	T.	т	(Name)	0	(dichit)	(idan)	R	S	(1010) I	(antique)
Cooling																				
105 to 110	107.5	0.0	00	0	0	0	0	.0	.0.	0	0	2.9	10,0	041	.25	25	0	0		
100 to 105	102.5	0.0	0.0	- 0	0	0	0	0	0	0	000	2.0	10:0	. 641	77	21	0	- 0	7	
95 to 100	97.8	0.0	0.0	0	0	9	0	0	0	0	0	2.9	10.0	641	18	18	.0	0		
90 to 95	92.5	76.2	0.0	0	17	Н	10	- 19	0	0	0	2.0	10.0	641	- 14	14	0	0		
85 to 90	87.5	73.2	0.0	0	90	.13	-93	93	- 40	- 0	3	2.9	10.0	041	- 00	TI-	0	.0	0	
- 80 to 85	82.5	60.5	- 000	8	167	. 50.	225	223	0	- 0	0	.2.9	10.0	641	7	7	. 0	0		
75 to 80	77.5	63.3	0.0	35	216	108	350	359	0	0	0	2.0	10.0	641	4	4	.0	0		
701075	72.5	62.4	0.0	83	267	174	524	524	0	0	.0	2.0	10.01	541	0	0	0	0		
65 to 70	67.5	59.5	0'0	221	316	261	298	798	0	0	0	50	10.0	641	0	0	.0	0		
60 to 65	62.5	34.0	0.0	270	280	344	1012	-012	-0	-0	0	2.0	10.0	140	- 0	0	0	- 0		
Heating																				
35 to 60	57.5	48.4	0.0	287	248	295	830	830	0	0	.0	5.0	7.0	119	4	7			3	.0
S0 to 55	52.5	-14.8	0.0	280	288	311	879	879	0	0	.0.	2.9	7.0	449		9				-0
- 45 to 50	47.5	41.5	0'0	791	168	242	701	701	0	0	0	5.0	7.0	-514	*	8			7	0
40 to 45	423	38.0	0.0	335	212	237	704	704	- 0	- 0	-0	2.0	2.0	440	- 03	10.00				0
35 to 40	37.5	33.3	0.0	330	192	244		766	0	0	0	2.9	7.0	449	13	13			n n	.0
30 to 35	32.5	29.6	0'0	236	.163	248	547	. 647	.0	0	0	2.0	7.0	-149	-91	16			11	0
25 to 30	27.5	24.1	0.0	206	60	132	433	433	0	0	. 0	2.0	2.0	440	81	18	-		- 0	0
2010.25	22.5	21.6	000	150	89	.66	306	306	0	0	0	50	7.0	-516	20	20			4	.0
15 to 20	17.5	16.9	0.0	19	. 51	73.	161	161	0	0.	0	5.0	7.0	449	23	23				.0
10 to 15	12.5	10.5	000	145	57	43%	150	150	-0	- 0	. 0	2.9	7.0	:449	25	25			*	.0
5 to 10	7.5	6.4	0.0	- 53	. 20	37	. 110.	- 110	0	0	0	.50	7.0	- 149	28	28			3	.0
0.003	2.5	- 1.9	070	505	9	. 21	22	\$8	0	. 0	.0	2.0	7.0	419	30:	30			3	- 0
-5 10 0	(2.5)	0.0	0.0	24	0	100	55	25	0	0	.0:	2.9	7.0	449	33	33			1	.0
-10105-5	(7.5)	0'0	0.0	.3	.0	0		3	0	0	0	5.0	0.2	- 110	35	35			. 0	- 0
-15 nr -10	(12.5)	-0.0	- 18.0	0	-0.	-0	- 0	0	0.	- 0	Ф	2.0	. 2.0	-110	33	37			0	0
-20 to -15	(17.5)	0'0	0.0	-0	-0-	0	- 0	-0	0	.0.	0	5.9	7,0	- 555	-05-	- 04			. 0	- 0
-25 to -30	(22.5)	0.0	0.0	0	-0	0	0	.0.	0	0	.00	.50	7.0	-119	42	Ę.			0	.0
				2.620	2,920	2,920	8.760	8.760	0	0	0		1				0 -	-0	7.8	0 -
					,														-	

Cell Ref.	Comment
N-III	TMY-3 Weather Data for Daibury, CT
1:1	Okenpied hours as per the RFP data
×	Total Crack area of windows and doors
×	Asyrage wind speed during the cooling and boating seasons
0	11 sof M 1x Fool N 1x 5286 = 60 x P70
Di.	- 1.08 x [col O] x ([col B] - O76) = 1000 cooling. L/8 x [col O] x (Q76 - [col B]) = 1000 heating
0	- 1.08 s.l od O I s. (1 cal B 1 - 077.) = 1000 ambing: 1.08 s.l cal O J s. (Q77 - 1 od B 1) = 1000 besting
R	[solP] k(loo[1] - [oo[K]) - [,000 - 198x Pep
ir	[Led O 1x (Led J 1 = Led L 1) = 1,000 = P68 x, D69:
	[sof P] x ([sulf] = [sol R]) = 1,000 + P67
9	Fool (71x (1 col J 1 = 1 col L, 1) = 1,000 = 167

\sumptions:	Value	Link	CELL	Description
			ARR	
Single Drott - Sides, Top. Sweep (UT)	4	(UII)	P43	Exterior Dinns
Single Door - Sweep (UT)	8	(UT)	P44	Extense Doors
		(0.0)	PAS	
		(111)	P46	
			L#4	
Hinek, Seat Paint (LE)	375 ((00)	148	Open Warehouse Areas
.0	0	0	6td	0
.0.	0.0	. 0	150	.0.
- 07	0	0	PSI	- 0
0	0	0	P52	0
.0	0	0	153	- 0
0	0	0	PSI	0
.0.	0	0	P55	.0
	0		98d	.0
0	0	0	P\$7	0
.0	0		158	ū
. 0	0.00		P59	0
.0	0 0	0	1560	0
0	o o	0	194	0
.0	0		P62	0
.0	000		163	0
-0-	O	- 4)	1984	- 0
Total Crist Area		N.	126	Combination of all Types
Solsting Boiler Plant Efficiency.	90.07a		190	
Existing Cooling Plant Efficiency:	2.93 COP	COP	89d	
Preent Building Cooled	5.0%		694	
Vertage Winter Wind Spood	2.0	7.0 MPH	P70	
Average Summer Wind Speed	10.01	MPH	P71	
Crack Area Windowed Diversity.	25.054		1772	

Average Space Lemperati	ires - After limpl	ir millestramai	rear		
	Cooling		Honnig		Description
(Seamond)	72.0	920	819	920	average temperature for all areas
UnOccupied	72.0	077	84.8	077	

Page 6 of 20

TMY-3 Wead	TMY-3 Weather Data for Dantury, CT	Dantiury, CT						Operating Hours	ND.			Savinge								
Amb. Temp	Ave-Temp der F	M.C.W.R.	M.C. Lathulpy Buclbus	01-0% Hours	il-0% Haury 09-16 Hours	19-24 Hours	Total Bio	Over One Peak	Unitive One- Peak His	Occ 00-Pask	UnOsc 00- Peak lits	rack n ² ,	Average Wind Speed	Trow Rate (CFM)	Ope. Heating Cooling Savings (ABIT)	UnOcc Heating Cealing Savings ABBIT	Oce Cooling Sovings (MMBTD)	Unicke Cooling Savings (MMBTU)	Occ. Heating Savings (MMBRTU)	UnOce Beating Savings (MMBTD)
~	В		D	3	A	9	Ш	_	-	×	T	M	×	0	ъ.	0	R	×	1	1
Cooling																				
105 to 110	107.5	0.0	υ'0	0	0	a.	0	0	0.	0	0	1.1	10.0	243	0.	- 6	0	0		
100 to 105	102.5	0.0	0.0	0	0	0	0	0	0	0	000		10:0	.243	*	×	0	- 0		
95 to 100	87.8	0.0	0.0	-0	0	9	- 0	0	0	0	0	1:1	10.0	243	7	2	.0	0		
90 to 95	92.5	76.2	0.0	0	17	7	10	- 10	0	0.	0	3.1	10.0	2/13	w	35	0	n n		
85 to 90	87.5	73.2	0.00	.0	-08	.13	93	93	- 0	- 00	0	111	10.0	.243	Ŧ	*	0	0		
- 80 to 85	82.5	- 60.5	0.0	8	167	. 50.	225	223	0	0	0	17	10.0	243		3	. 0	0		
75 to 80	77.5	63.3	0.0	35	216	108	350	359	0	0	.0	1.1	10.0	243	-	1	.0	0		
701075	72.5	62.4	0.0	83	. 267	174	524	524	. 0	0	.0	17	10.01	243	- 0	- 0	.0	. 0		
65 to 70	67.5	50.5	00	221	376	261	298	798	.0	-0	.0	100	10.0	243	- 0	0	.0	0		
60 to 65	62.5	54.0	.0.0	270	280	175	012	- 216	- 00	- 0.	0	345	1000	. 243	- 0	0	0	. 0		
Heating	ı																			
. 35 to 60		48.4	0.0	787	248	295	830:	830	0	0.	.0	1.1	7.0	170	3	r			3	.0.
50 to 55	52.5	-14.8	0.0	280	288	311	879	879	- 0	0	.0.	1.1	7.0	170		en				-0
-45 to 50	47.5	41.5	0'0	791	168	242	701	104	0	0	0	1.1	7.0	170	7	4.			. 4	.0
40 to 45	423	38.0	0.0	333	212	237	704	701	0	- 0	0	475	0.4.	170	*					0
35 to 40	37.5	33.3	0.0	330	192	244	766	766	0	0	0	4.0	7.0	170	- 9					.0
30 to 35	32.5	29.6	υ'ο	236	163	248	647	647	. 0	0	0	1.1	7.0	170	7	7				0
25 to 30	27.5	24.1	0.0	206	- 0.5	132	433	433	-0	0		17	7.0	170		×				0
2010.25	22.5	21.6	-00	150	89	.66	306	306	0	0	0	1.1	7.0	170	6	-6			4	0
15 to 20	17.5	16.9	0.0	19	. 21	73.	161	161	0	0.	0	3.1	7.0	170	10	10			3	.0
10 to 15	12.5	10.5		45	57	430	150	150	- 0	- 10	. 0	1.1	7.0	170	- 11	11				.0
5 to 10	7.5	6.4	0.0	- 53	20	37	110	110	0	0	0	17	7,0	170	10	-11			7.	. 0
0.103	2.5	1.0	0.0	385	- 9	21	22	\$85	0	. 0	.0.	1.1	7.0	170	12	12			61	- 0
-5100	(2.5)	0.0	0.0	24	0	100	55	52	0	0	.0	1.1	7.0	170	13	13.	100		0	0
-10 to -5	(7.5)	0.0	0.0	.3	.0	0	. 3	3	- 0	0	0	1.1	0.7	120	14	14				- 0
-15 to -10	(12.5)	-0.0	- 10.0	. 0	-00-	-0-	. 0.	.0	-0-	- 10	-0.	3.1	. 2.0	120	- 15	. 15			. 0	0
-20 to -15	(17.5)	0.0	0.0	.0.	.0.	0	.0.	.0.	0	.0	0	400	7.0	170	16				0	. 0
-25 to -30	(22.5)	0.0	0.0	0.0	- 0	0	. 0.	.0.	0	0	0	1.1	7.0	170	21	17			0	0
				0.000	3 450	3000	N 760	8.760	0		0							- 0	100	0

Cell Ref.	Cimment
N-III	TMY-3 Weather Data for Dailbury, CT
3	Oxempted hours us per the RFP dutin
W	Total Crack area of windows and doors
z	Avyrage ward speed during the exoling and busing seasons
0	soil M x soil N x 5286 60 x P70
ń,	= 1.08 x [col O [x (] col B [+ 076) + 1000 cooling, 1.08 x [col O [x (Q76 +] col B]) + 1000 leading
0	- 1.08 x [col O] x ([col B I - O77) = 1900 cooling, 1.08 x [col O] x (Q77 - [col B]) = 1000 heating
×	[sof P] x (] sol [] = [sol K] 3 = [SOX) = [58.x PG)
is.	l od Q] k (cd J f e cd L]) = 1,000 = 1968 x 1969
-	[cotP[x(]cot1]=[cot K] = 1,000+197
2	Leol O 1 x (T col 3 1 - L col 1 . L) = 1.0HO = 747

Assumptions:	Value	Unit	CELL	Description
			ARR	
Single Dron - Sides, Top, Sweep (FT)	6	(UD)	P43	Exterior Dinns
Double Door - Sides, Top, Sweep, Center (1	Ħ	(1)	btd	Extense Doors
merior Seal (LF)	57	23 (UF)	PAS	Pertingler of Man Patry
0	0	,	P46	0
.0	0	0	P47	.0
0	00		- b48	0
(0)	0'	0	6751	D.
0	0	-	P50	0
0	0		PSI	.0
-0	0	, x	P52	.0
.00	0	0	P53	.0
- 0	00		157	- 0
.0	0.0		P55	.0
.0.	0	0	9\$d	0
0	0	×	PS7	. 0
0	0		P58	0
0	a.		6Sd	U
	0.00	×	P68	.0
	00		P61	0
.0	0.0		1.62	0
0	00		1963	.0
0	0		P64	.0
Feial Crock Asea	38 01 7	SE	186	Combination of all Types
Switing Boiler Plant Efficiency	70.0%		P67	
Existing Cooling Plant Efficiency	2.93 COP	ADD	89d	
Percent Building Created	10000°		69d	
Average Winter Wind Spoot	7.0	MPH	04d	
Average Summer Wind Speed	10.0 MPB	MPEL	P71	
Crack Area Windward Diversity	25.0%		1772	

verage Space Lemp	cratters - Atter in pr	CINCLEMENT OF	12.33		
	751		Hearing	-	Description
poidne	72.0	920	20.0	970	average temperature for all mean
1 Accurried	75.0	-022	200	1077	

Page 7 of 20

Heat Mat. Will Enthing Mat. Will Mat.	IV-3 Weat	TMY-3 Weather Data for Danliury, CT	Santuers, CT					2	Operating Hours	SJES		×	Savinge								
τ αβ Γ αγ Γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ											-					Ober Heatman	UnOpe		- Saction		TheOre
10 10 10 10 10 10 10 10	mb. Temp		M.C.W.R.	M.C. Earbalpy Burlbana	01-08 Hours	09-16 Hours		Total Bire Blours	Oce On Peak Hea	Unition On- Peak Hrs.	Occ-00-Peak	Unotes 00: Peak Mrs	_	Average Wind Speed (MPII)	_	Ceoling Savings (MBH)	Cesting Savings (MBH)	Oct. Cooling Savings (MMBTL)	0.00	Occ. Heating Savings (MMBJTU)	
10 10 10 10 10 10 10 10	1	20		D	3	A	25	Ш	-	1	×	1	W	×	0	Ь	0	×		4	-
11 10.53 0.00 0.01 0.0 0	oline																				
No. 1, 1975 1975	105 to 110	107.5	0.0	0'0	-0	0	0	0	0	0.	0	0	1.9	10,0	535	12.	21	0	0		
97.5 60.0 60.0 60.0 60.1 60.0 60.1 60.0 60.1 60.0 <th< td=""><td>100 to 105</td><td>102.5</td><td>0.0</td><td>0.0</td><td></td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>.00</td><td>1.9</td><td>10:0</td><td>535</td><td>81</td><td>18</td><td>0</td><td>- 0</td><td>7</td><td></td></th<>	100 to 105	102.5	0.0	0.0		0	0	0	0	0	0	.00	1.9	10:0	535	81	18	0	- 0	7	
Key State 70.2 0.0 0.0 17 2 19 0 0 0 0.1 10.0 355 12 85 State 0.03 0.01 4 10.0 3 10.0 0 </td <td>95 to 100</td> <td>87.8</td> <td>0.0</td> <td>0.0</td> <td>-0</td> <td>0</td> <td>9.</td> <td>. 0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>6.1</td> <td>10.0</td> <td>535</td> <td>15</td> <td>15</td> <td>0</td> <td>0</td> <td></td> <td></td>	95 to 100	87.8	0.0	0.0	-0	0	9.	. 0	0	0	0	0	6.1	10.0	535	15	15	0	0		
89 87.5 9.0 89 13 9.3 9.3 9.0 0	90 to 95	92.5	76.2	0.0	- 0	17	H	10	- 61	0	0	0	1.9	10.0	535	15	12	0	0		
85 87.5 60.5 6	85 10.90	87.5	73.2	0.0	-0	-08	.13	-93	93	- 33	- 0	3	1.0	10.0	535	55	5	0	- 0		
50 77.3 60.4 63.4 60.6 63.4 60.6 63.4 60.6 63.4 60.6 63.4 63.5 63.6 6	80 to 85	82.5	- 60.5	000	8	167	. 50.	. 225	223	0	0	0	1.9	10.0	535	9.	9	. 0	0		
75 7.2.4 0.0 8.4 3.07 174 52.4 52.4 0 0 0 0 1.0 6.1 10.0 5.55 0 5.3.5 6.3.5 5.40 0.0 0 0 0 0 0 1.0 6.1 10.0 555 0 5.5.1 44.0 0.0 27.0 34.0 10.2 9.2 0	75 to 80	77.8	63.3	0.0	35	216	108	350	359	0	0	.0	9.1	10.0	135	.3	3	0	0		
0.0 6.7.3 9.95 0.0 2.21 316 296 9.78 0	701075	72.5	62.4	0.0	83	267	174	524	524	0	0	0	6.1	10.0	535	0	0	0	0		
No. No.	65 to 70	67.5	59.5	0'0	221	316	261	798	798	0	- 0	.0	- 1°9	10.0	535	- 0	- 0	0	0		
95 57.5 48.4 0.0 257 2.06 8.00 8.00 0 0 0 0.1 7.0 375 7.0 4.5.5 4.13 0.0 2.0 2.0 0 0 0 0.1 7.0 375 9 4.15 4.13 0.0 2.0 0	10 to 65	62.5	54.0	.00	270	280	344	012	-012	- 0	- 0	0	1.9	10.0	535	- 0	0	0	- 0		
97.3 48.4 0.0 2357 28.4 2.9 87.0 0 0 0 0.1 7.0 47.5 7.7 47.5 7.7 47.5 7.7 </td <td>ating</td> <td></td>	ating																				
47.5 44.8 0.0 236 236 311 87.9 87.9 0 0 0 0.1 7.0 375 9 4.73 41.3 60.0 29.1 13.9 23.7 7.0 70.1 70.0 0 0 0 0 1.0 375 1.1 4.73 41.3 61.0 7.0 70.0 0 0 0 0 1.0 375 1.1 5.23 5.34 51.2 23.4 7.0 7.0 7.0 0 0 0 0 0 1.0 1.0 1.0 1.0 0	55 to 60	57.5	48.4	0.0	787	248	295	830	830	0	0	.0	1.0	7.0	375	ž.	1			1	.0
473 415 415 415 415 710 701 0 0 0 0 0 10 700 715 11 373 334 0.0 235 127 234 766 0 0 0 6.1 70 775 11 275 234 0.0 236 167 236 167 267 0 0 0 6.1 70 775 115 275 234 0.0 187 647 0 0 0 0 0 0 0 170 775 115 115 115 170 775 115 115 115 143 0	50 to 55	52.5	-14.8	0.0	280	288	311	879	879	0	0	.0.	1.0	7.0	375	6	6				.0
4(2) 3(4) 0.0 3(3) 13.5 21.7 24.7 70a. 70a. 0 0 6.1 70 175 185<	15 to 50	47.5	41.5	0'0	791	168	242	107	107	0	0	0	6.1	7.0	.375	11	11			10	0
97.5 33.4 9.0 3.40 19.2 24.4 766. 6 0 0 6.1 7.0 175 115 27.5 2.20 0.0 2.30 16.3 2.84 766. 6.0 0 6.1 7.0 175 115 27.5 2.34 0.0 2.6 6.7 1.35 6.4 7.0 6.7 7.0 775 197 17.3 1.60 0.0 1.50 0 0 0 0 1.7 7.0 775 197 2.1 17.3 1.60 0.0 1.60 0 0 0 0 1.7 7.0 775 2.1 1.7 1.7 1.0 1.0 0 0 0 0 1.7 7.0 </td <td>40 to 45</td> <td>123</td> <td>38.0</td> <td>0.00</td> <td>335</td> <td>212</td> <td>237</td> <td>704</td> <td>- 704</td> <td>0</td> <td>. 0</td> <td>0</td> <td>-1'0</td> <td>0.4</td> <td>375</td> <td>13</td> <td>13</td> <td></td> <td></td> <td> Di</td> <td>0</td>	40 to 45	123	38.0	0.00	335	212	237	704	- 704	0	. 0	0	-1'0	0.4	375	13	13			Di	0
2.5.5 2.9.6 0.0 2.8.6 16.3 2.8.8 64.7 64.7 6.7 0 0 0 0 0 17.0 37.5 17.7 17.5 27.5	35 to 40	37.5	33.3	0.0	330	192	244		766	0	0	0	1.0	7.0	375	.51	. 15			14	.0
27.5 3.4.1 6.0 4.3.1 4.	30 to 35	32.5	29.6	0'0	236	163	248	647	647	.0.	. 0	0	1.9	7.0°	375	- 12	. 17			14	0
2.5. 2.16 0.0 159 684 770 390s 366 0 0 0 0 1 7.0 735 221 1.2.3 1.6.5 0.0 6.7 7.0	25 to 30	27.5	24.1	0.0	206	105	132	433	433	0	0	.0.	1.9	2.0	375	- 16:	40			10.	0
173 1469 600 673 511 735 1901 610 6 0 6 0 6 1 70.0 875 233 234 235 2	201025	22.5	21.6	-000	150	89	.66	306	306	0	0	0	6.1	7.0	375	21	21			80	0
12	15 to 20	17.5	16.9	0.0	29	. 21	73.	161	161	0	0	0	5.6	7.0	375	.23	23			9	.0
2.5 6.4 6.0 5.3 20 37 110 110 0 0 0 0.1 7.0 375 277 277 2.5 1.0 0.0 3.4 0.1 1.1 8.5 0 0 0 0.1 7.0 375 227 (2.5) 0.0 0.0 0.0 0 0 0 0 0 1.0 375 375 379 375 371 475 375 371 475 375	10.00 15	12.5	5.01	0.00	150	57	433	150	150	- 0	- 0	0	1.0	7.0	375	25	25			5.	.0
(2.5) 1.9 0.0 58 6 2.1 28.5 0 0 0 0.1 7.0 575 29 (7.5) 0.0 0.0 2.4 0 0 0 0.1 7.0 575 579 579 579 579 70 70 70 575 579 70 <td>5 to 10</td> <td>7.5</td> <td>6.4</td> <td>0.0</td> <td>- 53</td> <td> 20</td> <td>37</td> <td>. 110</td> <td>- 110</td> <td>0</td> <td>0</td> <td>0</td> <td>1.9</td> <td>7.0</td> <td>375</td> <td>. 27</td> <td>27</td> <td></td> <td></td> <td>-</td> <td>. 0</td>	5 to 10	7.5	6.4	0.0	- 53	20	37	. 110	- 110	0	0	0	1.9	7.0	375	. 27	27			-	. 0
(7.5) 0.0 0.0 0.0 3.4 0 1, 25, 25 0 0 0 0 6.1 7.0 375 31 (7.5) (7.5) 0.0 0.0 0.0 3 0 0 0 0 3 3 3 3 3 3 3 3 3	0.003	235	61	0.0	385	- 9	. 21	契	85	0	. 0	.0.	1.0	7.0	375	.29	50	7		3	.0.
(75) 0.0 0.0 0<	-5100	(2.5)	0.0	0.0	24	0	10	35	25	0	0	.0	1.6.1	7.0	375.	315	34	7	1	1000	0
(125) 4.6 a.6 b.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-10 to -5	(22)	0.0	0.0	3	.0	0	. 3	3	0	. 0	. 0	. P.T.	7.0	375	-13	33			. 0	0
(225) 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 to -10	(12.5)	-0.0	180	0	-00-	-0-	· 0·	.0	-0-	- 10	Φ.	1.9	7.0	375	35	35			. 0	0
(22.5) 0.0 0.0 0 0 0 0 0 0 0 0 0 0.3 720 375 379 (22.5) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	20 to -15	(17.5)	0.0	0.0	-0.	.0.	0	. 0	.0.	0	.0	0	6.1	7.0	37.5	37	37			. 0 .	0
0 000 8 000 0	25 to -30	(22.5)	0.0	0.0	.0	.0	0	. 0	.0	0	. 0	.00	1.0	7.0	375	36	39			. 0	-0
2,740					2.020	2,920	2,920	8,760	8,760	0	.0	0		Ĭ	1				-0	103	0 -

ell Ref.	Comment
N-III	TMY-3 Weather Data for Darbury, CT
1	Oxenpied hours us per the RFP data
×	Total Crack area of windows and doors
×	Avverage ward speed during the exoling and beating seasons
0	#1'col M 1x [col N 1x 5286 = 60 x P7t1
Ob.	- 1.08 x [col O [x ([col B] - O76) = 1000 cooling, 1.08 x [col O [x (Q76 - [col B]) = 1000 heating
ò	- 1.08 x oul O x (col B - 077) = 1000 uniling. 1.08 x col O x (Q77 - oul B) = 1000 ficating
R	[sof P x (1 sof 1] - 1 sol K]) = 1,000 - 198 x P09
M	Led O X (Led J 1 Led L 1 = 1,000 = P68 x P69 :
į.	[so(P]x([sulf] = [ssl R]) = 1,000 = 167
9	Tool (21x (1 tool 3 1 = 1 tool 1, 1) = 1,000 = 1467

Assumptions:	Value	Unit	CELL	Description
			4.48	
Briek, Seal Paint (J.F.)	34 ((97)	P43	Exterior Wall at Roaf Perimeter.
seal (LF)	454	173	btd	Extense Wall at Roof Permister
Slock, Scal (SF)	380 (85)	(48)	PAS	Extense Wall Area
Stock, Seul (SF)	304 (SE)	SE)	P46	Above Select Entry Areas
merior Scal (LF)	331	170	L#4	Sides of Window Systems
Single Door - Sides, Thy, Sweep (UII)	4	(13)	148	Extense Dones
Nuble Door - Sides, Sweep, Center (UT)	31	(db)	6td	Exterior Dogrs
Souble Dose - Sweep, Center (UII)) [2	(111)	150	Exterior Doors
Sent Paint (T.F.)	62 (1	(47)	P51	Garage
0	0.0		P52	6
-0	0		1933	0
.0	0 0	, a	PS4	.0
.0.	0.0		P55	0
0	10		98d	. 0
.0	00		P\$7	.0
.0	0 0		158	- 0
. 0	10		P59	0
.0	0.0		D-09-C	0
0	10		194	0
.0	0.0		P62	0
.0	0.0		163	.0
-0-	10		1921	- 0
A desired to the second	20.0		280	4
Soul Crack Area	DAN Ser	36	99.1	Compliance of all 1950s
COSTING DONES FLIGHT FLIGHTBOX.	78.2.8		70.1	
Kisting Cooling Plant Efficiency	3.52 COP	30P	P68	
preent Building Cooled	100.0%		69d	
Wertage Winter Wind Speed	7.03	7.0 MPH	P70	
Average Summer Wind Speed	10.0	MPH	P71	
Prick Area Windwurd Diversity	10.09%		1772	

Average Space Temper	atures - After Imp	lementalium u	FEAR		
	Cooling		Henning		Description
Occupied	72.0	920	24.0	910	леже Па тії этпетацітэї эдизэле
Untheorpied	72,0	077	754,0.	077	

Page 8 of 20

TMY-3 West	IMV-3 Weather Data for Danfurs, CT	Danhury, CT						Operating Boars	urs			Savings								
Amb Temp Um deg. F	Ave Jemp deg F	M.c.W.B	M.C. Enthaley Bin thess	01-08 thum	06-10 fluars	99-14 (fram 17-21) Journ	Fotal Bin Unany	Occ On-Peak Urs.	Unitive On- Peak Unit	Occ Off. Park He	Grides Off. Ball IIn.	Total Const. Area (JF)	Average Wind Speed (MPI)	tafiltration How Rite (CIM)	Cxe. Honting Cooling Sermes (MBH)	UnOcc Heating Cooling Savings (MIIII)	Oke, Couling Savings (MMBTU)	UnOxe. Caving Savings (MMIRTI))	Occ. Hening Sectings (MMBTU)	UnOcc. Heating Savings (MMBTU).
V	E E	3	D O	E	4	5	11	-	1.5	×	Т	W	×	0	Ь	0	В	×	1	1
Cooling	-																			
105 to 110	107.5	0.0	0'0	.0.	0	0	0	O.	0	0	.0.	2.7	10:0	587	23	17	- 0	0		
100 to 105	102.5	0.0	0.0	00	- 0	0	0	0	0		- 0	2.7	10.0	587	- 50	- 14	0	- 0		
95 to 100	97.5	-0.0	0.0	0	0	0	0	0	0	9	9	2.7	10.0	587	91	11	0	0		
56 00 06	92.5	76.2	0.0	0	- 17	e	61.	5	11	. 0	0	27	0'01	587	- 13	40	0	0		
85 to 90	87.5	73.2	10.0		383	13	565	. 22	71	- 00:		2.7	0.01	587	10	- 5				
- 80 to 85	82.5	- 69.5	0.0	8	167	- 20	225	は	121	- 0	0	2.7	10.0	587	4	2	0	. 0		
75 65 80	77.5	65.3	0.0	35	216	108	350	88	274	0	0	2.7	1000	587	*	0	0	0		
70 64 75	72.5	62.4	0.0	83	267	174	524	125	3643	. 0	0	2.7	10,01	587	.0	0	0	. 0		
65.40 70	67.5	50.5	- 0'0	221	316	261	. 208	190	809	- 0	. 0	2.7	0,01	587	0	0	- 0 -	- 0		
69 M 69	62.5	34.0	13.05	279	280	341	012	217	569	100	- 00	2.7	0.01	587	0	- 11		.0.		
Heating																				
35 to 60	57.5	48.4	0.0	287	348	203	830	198	632	0	0	2.7	7.0	411	. 9	.5	1		1	2.
50.00.55	52.5	*4.8	0.0	280	288	311	879	20%	670	- 0	- 0	2.7	7.0	411	oti	. 5	In contrast		2	3
45 to 50	47.5	31.5	.00	291	168	242	101	167	534	9	0	2.7	7.0	411	01.	7			2	· · · ·
40 65 43	42.9	38.0	-0.0	255	212	237	704	168	536		-0-	2.7	7.0	- 412	12	9			-2	
35 to 40	37.5	33.3	0.0	-330	192	244	166	182	584	.0.	0	2.7	7.0	411	14	11	1.0		*	7
30 to 35	32.5	29.6	0'0	236	163	248	647	154	. 493	0	ū	.27	7.0	311	1.1	14			3	7
25 to 30	27.5		0.0	206	115	132	433	103	330		0.	2.7	7.0	411	10	16	1		2	9
20 to 25	22.5	21.6	0.0	159	.89	79	306	73.	233	- 0	0	2.7	7.0	411	21	18			2	
15 to 20	17.5	16.9	0.0	19	- 51	12	161	.45	146	. 0	-0	2.7	7.0	41.1	23	20			4	3
(0 to 15:	12.5	10.5	0.0	45	- 23	×7	150	36	114	. 0	- 0	3.7	7.0	411	36	22	1.0		1	'n
5 to 10	. 7.5	- 6.4	0.0	53	- 50	37	110	20.	- 84	. 0	0	2.7	7.0	- 411	28	25			1	
500	2.3	1.00	0.0	- 38	- 9	12	85	20	. 69	0	0	2.7	0.7.	400	30	37			1	2
>500	(2.5)	0'0	0.0	24	0	1	25	9	. 19	0	- 0	2.7	7.0	411	32	29	7		-0	1
519101	(7.5)	0.0	0.0	3	0	0	.3	1	rì	0	- 0	2.2	.70	- 481	31	31			0	0
-01-09-01-1	(123)	0.0	0.01	. 0	- 43-	0	0	0	- 0	- 10	-0-	2.7	-0.0	411.	32	#			- 0	
-20 to -15	(17.5)	0'0	0.0	. 0	0	0	.0	0	.0.	0	.0	2.7	7.0	411.	39	36	4		0	.0.
-25 to -20	(22.5)	0.0	0.0	. 0	0.	0	0.	0	.0	0	0	.27	02.	411	.41	38			0	.0.
				2,920	2,920	2.920	8,760	2,086	6,674	0	0						.0	.0	15	25

Cell Ref.	Comment
11/2	TMY-3 Weather Data for Darbury, CT
Tel.	Oximpred finars as per the RFP data
W	Total Cruck area of windows and aboves
Z	Average wind speed during the conting and besting seamery
_	- Golf M A Colf M 8 5286 + 605 x P70
_	- 1785x [cit O] x ([col B] - 076) = 1000 civiling: 1.08 x [cit O] x (Q76 - [cit B]) = 1000 batting
-	-1.08 x [col O] x ([col B] - 077) - 1000 cooling. 1.08 x [col O] x (077 - [col B]) - 1000 heating
W.	[] cal P] s. ([cal I] = [cal K]) = 1,000 = P68 x P59
u;	[col Q [x ([col J (- col I,) - 1,000 - Polk x PM)
1	[[cal P [x i col I] = [aol K [j = 1,000 = 197]
	[cd]Q[sc[cutJ]=[sutL])=1300=P67

Assumptions	Value	l'min	CELL	Description	
			RICE		
Seat (J.E)	512 (LF)	(17)	P45	Building Permeter	
0	0		P44	-0	
0	0		P45	0	
0	0.0		94d	¢	
0	0		747	0	
0	0		84d	0	1
-0.	00		6fd	0	1
-0	0		P50	0	1
0	00		PS1	0	7
42	0	0	P52	0	1
	00		P.55	0	
0	0 0		150	0	
0	00		P55	0	
.0	0.0		95d	.0	1
.0	00		151	0	
0	0		P58	0	1
- 0	0	0	65d	0	
0	00		D60	0.	
0	0	0	PKI	0	ń
0	00		P62	0	ń
. 0	0	0	PK3	0	1
.0	0	0	Pick	0	
	107.0	20	220	9	1
THIRT COST ATCZ		, IA	100	Campanagon of all 15pcs	1
Existing Boiler Flant Efficiency	90.07%		P67		1
Existing Cooling Plant Efficiency	2.93 COP	30F	89d		7
Percent Building Civiled	100.0%		69d		
Average Winter Wind Speed	7/0/7	MEH	P70		1
Average Summer Wind Speed	10.0 MPH	MPH	171		
Court Ama Wandanel Daviesies	25.0%		644		

Merage Space Fra	peratures - After imp	dementation	of EMS.		
100	Cooling		Heating		Description
boupped	72.0	920	70.0	920	average temperature for all mean
DeOccupsed	908	077	0.59	640	

Page 9 of 20

Putnam County, NY Donald B. Smith Government Campus - Bailding 3 Infiltration Reductions

TMY-3 Weat	ver Data for	IMP-3 Weather Data for Danlurs, CT						Operating Roars	Jury .			Savings								F
Arab Femp Un deg 1	Ave Temp deg F	M.C.W.B.	M.C. Enthaley Bin thess	01-08 flours.	OA-10-thums	99-18-Unary 17-21 Bruns	Potal Bin Unav	Occ One Peak files	Untire On- Deal Ure.	Occ Off. Post He	(intbacott. Ball line	Turtal Creed. Area (IP)	Average Wind Speed	Sew-Rite (CPM)	Coc. Honting Cooling Sermes (MBH)	United Healing Cooling Swemps (MIIII)	Occ. Confing Savings (AMB/U)	UnOcc Custing Savings (MMBIT1))	Ox. Heating Sectings (MMBTU)	UnOcc. Reating Stavings (MMBTU)
V	a	0	ď	E	4	9	=	-	3.	×	1	W	×	0	d	0	я	y.	-	1
Couling	1																100			
J05 to 110	107.5	0.0	0'0	. 0	0.	0 -	0	.00	.0	0	.00.	0.5	0.01	110	+	es.	. 0	0		
100 to 105	102.5	0.0	- 0.0	- 0	- 0	0	. 0	- 0	0	0	0	163	10.0	110	4	3	- 0	. 0		
95 to 100	97.5	-0.0	0.0	0	0	0	0	0	0	0	0	0.5	10.0	110	3	cı	0	0		
56 00 06	92.5	76.2	0.0	0	17	e	- 16	5	- 17	. 0	0	0.5	0.01	110	ř4	1	- 0	0		
.85 to 90	87.5	73.2	0.0	. 0	100	41	575	23	7.1	- 000	- 30	6,65	0.01	110		- 1		300		-
- 80 to 85	82.5	- 69.5	0.0	8	167	- 30	225		121	0	0	0.5	10.0	110	1	0	- 0	. 0		
75 to 80	77.5	65.3	0.0	35	216	108	350	88	274	0	0	-0.3	1000	110	1	0	0	0		
70 64 75	72.5	62.4	0.0	83	267	374	524	125	3643	0	0	0,5	10,01	310	0	0	0			1
65.46.70	67.5	50.5	0.0	221	316	261	198	190	809	- 0	0	50	0'01	010	. 0	0	0	- 0		1
59 1/1 09	62.5	34.0	13.09	270	280	344	012	217	\$603	100	- 00	500	0.01	3110	0	- 0		.0.		1
Heating																				
09 cm 52	57.5	187	0.0	287	348	502	830	198	632	0	0	50	7.0	- 77	1	0			0	.0.
50.00.55	52.5	-14.8	0.0	280	288	301	879	20%	670	- 0	0	0.5	7.0	7.1	2	- 0	Jan. 1997		0	0
45 to 50	47.5	31.5	.000	291	168	242	107	167	534	9	0	0.5	7.0	- 11	6	1			0	1
40 65 43	42.5	38.0	-0.0	. 255	212	237	704	168	536		.0.	- 63	7.0		r)	- 35			-1.	D -
35 to 40	37.5	33,3	0.0	330	192	244	992	182	584	-0	0	0,5	7.0	- 22	et.	.2			1.	4
30 to 35	325	29.6	0'0	236	163	248	647	154	493	0	Ü	50	7.0	177	.3.	*			1	-
の見り気	27.5	24.1	0.0	206	. 36	132	433	103	330	0 -	0.	- 050c	7.0	- 22	- T	.3			0	4.0
20 to 25	22.5	21.6	0.0	159	89	27	306	73	233	0	0	0.5	7.0	11	7	15			0	-
15 69 20	17.5	16.9	0.0		-51	12	161	.45	1.46	.0	0	0.5	7.0	- 17	1	19.			9	1
10 to 15	12.5	10.5	0.0	45	57	×7	150	30	114	. 0	.0	500	7.0	- 17	iri	#	1		- 0	_
5 to 10	. 7.5	- 49.	0.0	- 53	- 50	37	110	. 20.	73	. 0	0	0.5	7.0	- 17	100				- 0 -	. 0
549.0	23	1.0	0.0	38	- 9	12	85	20	6.5	0	0	10.5	07.	- 77	- 0	W)			0	0
>5 to 0	(2.5)	0'0	0.0	24	0	1	25	9	. 19	0	- 0	0.5	7.0	- 212	9	. 6	7		0	0
-104615	(7.5)	0.0	0.0	3	0	0	.3	1	rì	0	0	50	.70	24.	. 1	. 5			0	0
01-09-61-	(12.5)	0.0	- 10.01	0	42	0	0	0	-0	- 0-	0.	- 500	7.0	- 11	- 2	9			- 0	. 0
-2010-15	(17.5)	0'0	0.0	. 0	0	0	. 0	0	.0.	0	.0	0.5	7.0	- 17	- 2	9	4		0	.0
-25 to -20	(22.5)	0.0	0.0	. 0	0.	0	0.	0	0	0	0	50	02.	- 22	30	2.			0	.0.
				2,920	2,920	2.920	8,760	2,086	6,674	0	0						.0	.0	*	6

Cell Ref.	Comment
N-11	TMY-3 Weather Data for Darbury, CT
170	Oximpred finars as per the RFP data
W	Total Cruck area of windows and aboves
×	Average wind speed during the civiling and beating seamery
0	- tail M A col N 8 5286 + 60 x P70
ъ	- 1.08 x [col O [x ([col B] - 076) + 000 confing 1.08 x [col O] x (Q76 + [col B]) = 0.000 basting
ò	- 1 /8 x [col O] x ([col B] - 077) = 1000 cooling. 1.08 x [col O] x (077 - [col B]) = 1000 heating
1	[cot P] s ([cot I] + [cot K]) - 1,000 - Ps8 x PS9
S	[[col Q] x([cul J] + [col L]) = J,000 + P68 x P09
-	cetP x i cel I + cel K 1 = 1,000 P67.
5	[col () [x (] col () 1 [col () 1) = 1,000 = P67

Assumptions	Value	Unit	CELL	Description
			REF	
Overhead Dane Weather Strip - Sides	6	6 (UT) =	P45	Al Recent Construction Bays
0	0	0	P44	-0
0.	00	0	P45	.0
0	00	0	94d	¢
0	0	0	747	ō
0	0	0	84d	0
0	00	0	6rd	0
0	00	0	950	0
0	0	0	151	0
0	0	0	P52	0
- 10	000	0	P55	-0
0	0	0	150	0
0	00	0	P55	0
.0	00	0	98d	0
0	00		194	0
0	0	0	PSR	.0.
0.	0.	0	65d	0
0	00	0	D00	0
0	0.	0	PKI	0
0	00	-0	P62	0
. 0	0	0	PK3	0
0	0.0	0	PK4	0
Ivial Crack Area	0.50	38	994	Combination of all Types
Existing Boiler Plant Efficiency	77.2%		1967	
Existing Cooling Plant Efficiency	2.93	COP	89d	
Percent Building Circled	100.0%		69d	
Avange Winter Wind Speed	2/0	MPH	920	
Average Summer Wind Speed	10.0 MPH	MPH	171	
Crast Area Windward Diversity	25.0%		P72	

Merage Space Lempe	Cathires - Affer in	plementation	of EMS		
	Cooling		Heating		Description
houpied	72.0	920	-71.0-	920	average lemporature for all areas
POcuped	908	077	58.0	077	

Page 10 of 20

Putnam County, NY Kern Building - Health Dep/DMV/WIC Infiltration Reductions

TMV-3 Weat	her Data for	TMV-3 Weather Data for Danhurs, CT						Operating Boars	NES.			Savings								
Amb Femp Un deg J	Ave Temp	M.C.W.B.	M.C. Enthaley Bin thess	01-28(Hours		09-10-10-am 17-21/litum	Fotal Bin Usuar	Oce On-Peak Urs.	United On- Peak United	Occ Off. Peak He	Grider Off. Path Hrs.	Total Cred. Area (16)	Average Wind Speed (MI91)	San San San (CPM)	Coc. Hosting Cooling Stermes (MBH)	UnOcc Heating Cooling Strengs (MIIII)	Oce Couling Savings (AMBITU)	UnOcc Cauling Silvings (MMIIT1))	Ox Hening Section (MMBTU)	UnOcc. Heating Savings (MMBTI)
V	H	2	· O	E	4	2	=	-	.5	×	Т	M	×	0	d.	0	R	×	1	1
Cooling																				
J05 to 110	107.5	0.0	0'0	.0.	0	0	0	ū	0	0	.0.	27	0.01	600	100	- 16	- 0	0		
100 to 105	102.5	0.0	0.0	- 0	- 0	0	0	- 0	0	0	- 0	2.7	10.0	CHAS	30	16	- 0	- 0		
95 to 100	97.5	-0.0	0.0	0	-0	0	0	0	0	0	0	2.7	10.0	909	17	13	0	0		
56 00 06	92.5	76.2	0.0	. 0	17	e	51	60	11	0	0	2.7	10,0	600	- 13	6	- 0	0		
.85 to 90	87.5	73.2	0.0		.w	13	565	39	×	- 00:	- 40	2.7	0.01	GUID	101	0	.00	.00		
- 80 to 85	82.5	69.5	0.0	8	167	- 20	225	16	131	0	0	2.7	10.0	909	-	65	0	.0		
75 to 50	77.5	65.3	0.0	35	216	108	350	150	209	0	0	2.7	10:01	600	- dr	0	0	0		
70 to 75	72.5	62.4	0.0	83	267	174	524	218	306	0 -	. 0	2.7	10,01	909	.0	0	. 0			1
65 to 70	67.5	50.5	0'0	221	316	261	798	333	- 166	0	. 0	2.7	10.0	909	. 0	0	- 0	0		
69 M 69	62.5	27.0	13.09	270	280	344	012	380	532	- 0	0	2.7	0'01	CHNY	0	- 0	- 0	.0.		
Heating															-					
35 to 60	57.5	187	0.0	287	348	500	830	346	434	0	0	27	7.0	424	1	0			3.3	0.0
50.00.55	52.5	.44.8	0.0	280	288	311	879	306	513	- 0	- 0	2.7	7.0	424	.0		1		4:6	6.8
45 to 50	47.5	51.5	. 9'0	291	168	242	101	262	409	9	0	2.7	7.0	424	12	h			4.5	1.0
40 68 43	42.5	38.0	0.0	255	212	237	704	293	MIL		0	2.7	7.0	121	1/4	9			54	X1 .
35 to 40	37.5	38,3	0.0	330	192	244	992	618	447	0	0	2.7	2.0	424	.91	80			6.9	4.5
30 to 35	32.5	29.6	0'0	236	163	248	647	270	377	0	. 0	2.7	7.0	424	- 61	. 10			9'9	5.2
25 to 30	27.5	24.1	0.0	306		132	433	180	253	0 -	- 0	2.7	7.0	424	11	13	1		5.0	4.2
20 to 25	22.5	21.6	0.0	159	89	62	306	128	179	- 0	0	2.7	7.0	421	23	15.			3.0	3.5
LS 65 20	17.5	16.9	0.0	19	- 51	7.3	161	90	111	. 0	.0	2.2	7.0	424	25	17.			2.7	2.8
(0.00.15	12.5	10.5	0.0	45	- 25	257	150	63	88	. 0	- 0	2.2	7.0	424	28	- 61			23	2.3
5 to 10	. 7.5	- 4.9	0.0	. 53	- 50	37	- 190	- 96	104	. 0	0	2.7	7.0	42.1	- 30	22			1.8	1.0
0.013	23.	1.0	0.0	38	- 9	17	85	35	- 98	0	0	2.7	07.	421	32	31			1.5	1.6
>5 to 0.	(2.5)	0.0	0.0	24	0	1	25	10	135	0	- 0	2.7	7.0	424	35	26	7		6.0	0.5
5:9101-	(7.5)	- 000	0.0	3	0	0 -	.3	1	ri	0	0	2.2	.70	424	37.	B			1.0	0.1
41240-10	(123)	0.0	- 1001	0	42	0	0	0	-0	- 0-	0.	2.7	7.0	57	30	31			.00	0.0
-2010-15	(17.5)	0'0	0.0	. 0	0	0	.0	0	.0.	0	.0	2.7	7.0	421	- 41.	33		-	0.0	0.0
-25 10 -20	(22.5)	0.0	0.0	. 0	0.	0	.0	0	0	0	0	2.7	.20	424	43	35			0.0	0.0
				2,920	2,920	2,920	8,760	3,650	5,110	0	0						-	.0	-10.2	-32.8

Cell Ref.	Comment
N-11	TMY-3 Weather Date for Durbury, CT
1-1	Oxampied Imms as per the RFP data
N	Total Crack area of windows and doors
z	Average wind speed during the evoling and beating seasons
0	- LouTM x cot N x 5286 + 60 x P70.
i.	- 1.08 x J col O J x (J col B J - 076) = 1000 cooling, 1.08 x J col O J x (Q76 - [col B J J = 1000 beating
o	- 1.08 x vol O s. (Loid B. J - 077) = 1/100 confing. 1.08 x cut O s. (077 - cut B. J) = 1/000 beating.
×	[colP1x(fol1) - [colK1) - 1,001 - 198 x P69
30	[sol Q [xt [sol 1] - [sol L]) + 1,000 + P68 x [V9]
T	[coltP[xt[colT] - [colK]] - 1,000 - P67
þ	Tool O Excress 11 = Fool I 1 = 1,000 = Po7

\ssumptions-	Value	l'mir	CELL	Description
			REF	
Brock, Scal (LF)	192 (1.17)	6	P43	Sidewalls at Pfiched Roof Area
Single Door - Sides, Top, Sweep (UT)	8	(UU)	P44	Exterior Doors
boulde Dear-Sweep, Center (UT)	5 ((10)	P45	Exterior Desirs
interner Scal (LF)	299 (LE)	H.	2F-4	Sill of Slider Windows
.00	0 0		P4N	-0.
0	00'	0	64d	0
.0.	00		05d	0
.0	0 0		153	0
.0	0 0		P52	0
9	00		P53	0
0	00		PSd	0
-0	000		1955	-0
-0	00		954	0
-0	0 0		P57	0
0	0 0		PSN	.0.
.0	0 0	0	654	0
. 0	0 0		09d	0
. 0	0.0		P61	0
0	0 0		P62	0
. 0	0.0		PG	0
.0	0.0		PKH	.0
	235.5	100	970	of the second second second
the Control of the Co			200	Companies of their spices
ABBRIDG DAMES THAN DITICIONS	12,278		101	
xisting Cooling Plant Efficiency	2.93 COP	O. JOE	P68	
ercent Building Civiled	100,0%		69d	
Avarigo Winter Wind Speed	7.0 N	MPH	P20	
Average Summer Wind Speed	10.0 MPH	APH	P71	
Tout Area Windward Diversity	250%		172	

and the stillers are	Cooling		Heating		Description
cupied	72.0	920	73.0	920	average temperature for all mean
Occupsed	78.0	077	55.0	600	

Page 11 of 20

TMY-3 West	TMY-3 Weather Data for Danliney, C.	Danfury, CT						Operating Hours	ars.			Savinge								
											Ī					The Day				
Amb. Temp. Blu des F	And Temp Ave Temp Isin dea F dea F	MCWR	M.C. Eathalpy Dtu/Bma	61-0% Elean	il ADK Elvary (99, In Hours	17-24 Ilburs	Total Bin Elear	Ovy On-Peak Hea	Unitive On- Peak Hrs.	Occ Off-Posk His	Unitee 00-	Total Crack Area (II ²)	Average Wind Speed (MPI)	Trow Rate (CFM)	Ope. Heating Cooling Savings (MBH)	Heating Cealing Savings (MBII)	Oct. Cooling Savings (MMBTL)	UnOse Cooling Savings (MMBTU)	Oce Heating Savings (MMBTU)	UnOce Resting Savings (MMBTL)
~	Ш		D	121	A	9	Ш	1	T.	×	7	M	×	0	Ь	0	×	×	1	1
Cooling																				
105 to 110	107.5	0.0	0.0	0	0	. 0	0	.0	.0	0	0	1.6	10.0	344	-13	13	0	0		
100 to 105	102.5	0.0	0.0	0	0	0	0	0	0	0	000	1.6	10:0	芸	- 11	- 11	0	0		
95 to 100	82.8	0.0	0.0	-0	0	0	0	0	0	0	0	1.6	10.0	344	5	- 6	.0	0		
90 to 95	92.5	76.2	0.0	0	17	H	10	- 19	0	0	0	3.6	10.0	344	.8	16	0	0		
85 to 90	87.5	73.2	0.0	.0	980	13	- 63	-83	- 0	- 0	5	1.6	10.0	344	Ŋ	9	0	0		
- 80 to 85	82.5	60.5	000	8	167	. 50.	225	223	0	- 0	0	97	10.0	344	4	4	. 0	0		
75 to 80	77.5	63.3	0.0	35	216	108	350	359	0	0	.0	1.6	10.0	341		e e	0	0		
701075	72.5	62.4	0'0	83	267	174	524	524	0	0	0.	1,6	10,01	344	0	- 0	0.	- 0		
65 to 70	67.5	59.5	00	221	316	261	798	798	0	- 0	.0	1.6	10.0	344	- 0	- 0	. 0	- 0		
60 to 65	62.5	54.0	.00	270	280	775	1012	-012	-0	-0	0	3.6	10.0	344	- 0	0	0	- 0		
Heating																				
09 ot \$5	57.5	18.4	0.0	787	248	295	830	830	0	0	.0	1.6	7.0	. 341	- 4	P			7	.0
50 to 55	52.5	44.8	0.0	280	288	311	879	879	0	0	. 0	1.6	7.0	241	- 5				- 6	-0
-35 to 50	47.5	41.5	0'0	791	168	242	701	107	0	0	0	1.6	7.0	241	9	9			- 9	0
40 to 45	423	38.0	0.0	335	212	237	704	704	0	- 0	0	1.6	04	1741	8	×			- E -	0
35 to 40	37.5	33.3	0.0	330	192	244		766	0	0	0	97	. 2'0	241	6	6				.0
30 to 35	32.5	29.6	0'0	236	163	248	547	. 647	. 0	0	0	1.6	7.0	241	-01	10			- 6	0
25 to 30	27.5	24.1	0.0	206	60	132	433	433	0	0	. 0	97	7.0	241		12			1 2 2	0
2010.25	22.5	21.6	-000	150	89	- 20	306	306	0	0	0	971	7.0	241	13	13				.0
15 to 20	17.5	16.9	0.0	19	. 21	73.	161	161	0	0	0	3.6	7.0	241	14	14				.0
10 to 15	12.5	5.01	000	15	57	新	150	150	.0	- 0	. 0	1.6	7.0	241	15	51				.0
5 to 10	7.5	6.4	0.0	- 53	20	37	110	- 0110-	0	0	0	97	7,0		- 12	1.7			100	. 0
0.103	2.5	61	0.0	585	9	. 21	22	88	0	0	.0.	1.6	7.0	241	13	18			101	- 0
-5100	(2.5)	0:0	0.0	24	0	(T)	55	25	0	0	.0:	1.6	7.0	241	16	16			1	0
-10 to -5	(7.5)	0.0	0.0	3	.0	0	3	3	0	0	0	. 1.6	0.7	241	21	21.			. 0	- 0
-15 to -10	(12.5)	-0.0	0.00	0	-0:	-0	- Q:	0	0	- 10	0	3.6	. 2,0	341	F	22			0 .	0
-20 to -15	(17.5)	0.0	0.0	0.	-0-	0	. 0	.0	0	.0.	-0	97	7.0	241	23	. 23			0 .	. 0
-25 to -30	(22.5)	0.0	0.0	0	.0	0	0.	.0	0	0	0.	1.6	7.0	241	25	25			0	.0
				2 630	0.000	2 920	8.760	8.760	0	. 0	0							-0	. 19	0 -
				1	200	1	2001	1000	1	-								,		

Cell Ref.	Comment
N-II	TMY-3 Weather Data for Darbury, CT
T-E	Okampied hours us per the RFP duta
×	Total Crack area of windows and doors
×	Average wind speed during the cooling and bouting seasons
0	voi M x col N x 5286 (0 x P7t)
Dr.	- 1.08 x [col O [x ([col B] - O76) = 1000 cooling, 1.08 x [col O [x (Q76 - [col B]) = 1000 leating
0	- 1.08 s. out O. s. (col B - 077) = 1000 umiling; 1.300 x. col O. s. (077 - out B) = 1000 ficating
R	[solP]x([sol1]=[solK])=1,000=P68xP49
in	[cd U x (, [cd J] = [cd L]) = 1,000 = P68 x 159
	[sol P] x ([sulf1] = [sol R.] y = 1,000 = Pk7
9	Fool (71 x (1 col J 1 = 1 col J, 1) = 1,000 = 1967

Assumptions:	Value	Unit	CELL	Description
			SEE	
Single Door - Sides, Top, Sweep (UT)	0.0	(UD)	P43	Exterior Djams
Single Door - Sweep (UT)	9	(UT)	P44	Extense Doors
interior Seal (LF)	190	(41)	Pas	Perimeter of Windows at Intence
Stock, Sent (UT)	3	(111)	P46	Gable End Wall Louvers
.0.	0		P47	0
-0	0	48	1748	0
0	0	0	64d	o
.0	0	0.0	150	.0
- 07	0	000	PSI	.0
-0	0	0	192	0
-0	0	40	1933	.0
0	0	00	PS4	0
.0.	0	0	P55	0
	0	()	- PSG	.0
.0	0	0	PS7	0
. 0	0 - 0		158	-0
	0		6%d	.0
0.	0	0	1960	0
0	0	0	194	U.
0	0	0	P62	0
.0	0.	0.0	1963	.0
-0	0	- 4	184	- 0
de la companya de la	13 73 1		7.50	The state of the s
Southern Dailor Black Colombia	- 7.C. (Mr.		270	Colored to the Charles
Solution Couling Than Efficiency	3.43	3.50 COP.	bes	
tercent Building Carded	100.062		1361	
Average Winler Ward Speed	7.0	7.0 MPH	P76	
Average Summer Wind Speed	0.01	MPH	171	
Prick Area Windward Diversity	25.05u		177	

Descri	ription
O76 avera	ngo temperature for all areas
0.22	
	Q76 aver

Page 12 of 20

TMY-3 Wead	TMY-3 Weather Data for Danfusry, CT	Santuer, CT.						Operating Hours	- SJE			Savings								
				Ī							1		1		Ope. Herining	Heating		UniCles		UnOce
Amb. Temp. Bin deg F	Ave Temp deg. V	M.C.W.R.	M.C. Eathalpy Duchna	01-08 Hours	ő i-ok Heur (9-16 Jours	17-24 Hyurs	Total Bire Bloury	Ocy On-Posk Ifte	Unition On- Peak Hrs.	Occ-00-Peak His	UnOce 005 Peak Hzs	Total Cruck Area (It ²)	Wind Speed (MPH)	Trow Rate (CFM).	Cooling Savings (MBH)	Cesuling Savings (MBH)	Oct. Cooling Savings (MMBTD)		Oce Heating Savings (MMBJTU)	Savings Savings (MMBTU)
~	8	,	B	ы	A	9	Ш	1	1	×	T.	W	×	0	Ь	0	×	×	1	-
Cooling																				
105 to 110	107.5	0.0	0.0	-0	0	0	0	0	.0.	0	0	1.0	10,0	136	191	. 5	0	0		
100 to 105	102.5	9.0	0.0	. 0	0	Ф	- 0	0	- 0	0	. 00	1.0	10:0	136	- 4	+	0	- 0		
95 to 100	87.8	0.0	0.0	-0	0	9	- 0	0	0	0	0	1.0	10.0	136	7	þ	.0	0		
90 to 95	92.5	76.2	0.0	- 0	17	7	10	- 19	0	0.	0	3.0	10.0	136	3	3	0	n		
85 to 90	87.5	73.2	0.00	-0	980	.13	93	93	- 49	- 00	n	1.0	10.0	136	61	2	0	0		
- 80 to 85	82.5	- 60.5	000	8	167	. 50.	225	223	0 -	0	0	- 07	10.0	136	2	3	. 0	0		
75 to 80	77.5	63.3	0.0	35	216	108	350	359	0	0	.0	1.0	10.0	136	- 1	1	.0	0		
701075	72.5	62.4	0'0	83	267	174	524	524	. 0	0	.0.	1.0	10.01	136	0	. 0	.0	. 0		
65 to 70	67.5	50.5	00		316	261	298	798	0	-0	.0	1.0	10.0	136	0	0	.0	0		
. 60 to 65	62.5	-34.0	.00	370	280	175	012	216	- 0	- 0.	0	3740	1000	136	- 0	0	0	- 0	7	
Heating																				
. 35 to 60		18.4	0.0	787	248	295	830:	0£8	0	0.	.0	3.0	7.0	56	-1	1.			1	.0
50 to 55	52.5	-14.8	0.0	280	288	311	879	879	0	0	.0.	1.0	.0.2	95	- 1	2			2	-0
- 45 to 50	47.5	41.5	0'0	162	168	242	701	102	0	0	0	0.1	7.0	- 95	54					0
40 to 45	423	38.0	0.0	333	212	237	704	701	0	- 0	0	-3.0	0.4	56	Э.	3			. 2	0
35 to 40	37.5	33.3	0.0	330	192	244	766	166	0	0	0	1.0	7.0	95	3	3				.0
30 to 35	32.5	29.6	0'0	236	163	248	547	. 647	. 0	0	0	1.0	7.0	9.5	4				3	0
25 to 30	27.5	24.1	0.0	206	60	132	433	433	0	0	.0.	371	7.0	95	- 4	+	-			0
2010.25	22.5	21.6	000	150	89	- 20	306	306	0	0	0	1.0	7.0	56	S.				2	0
15 to 20	17.5	16.9	0.0	129	. 21	73.	161	161	0	0.	0	3.0	7.0	50	6	.5			3	.0
10.00 15	12.5	10.5		45	57	430	150	150	0	- 10	. 0	1.0	7.0	95		9				.0
5 to 10	7.5	- 6.4	0.0	. 33	20	37	. 110	011	0	0	0	- 10	7,0	95	9.	- 9				.0.
0.103	2.5	61.	0.0	385	. 9	21	22	58	0	. 0	.0.	170	7.0	56		1			1	- 0
-5100	(2.5)	0.0	0.0	24	0	100	55	25	0	0	.0:	1.0	7.0	56	1		1		0	0
-10 to -5	(7.5)	0.0	0.0	.3	.0	0		3	0	0	0	1.0	0.7	95	80	*			. 0	0
-15 to -10	(12.5)	-0.0	0.00	-0	-0:	0	- 0:	0.	0	- 10	ø	370	7.0	56	×	×			. 0	0
-20 to -15	(17.5)	0'0	0.0	-0.	- 00	0	. 0.	0.	0	.0.	-0	3.0	7.0	98	6				. 0	. 0
-25 to -30	(22.5)	0.0	0.0	0	.0	0	. 0	.0.	0	0	0	1.0	. 02.	-0.5	ō.	6				0
				2.630	3 930	2020	1 2 TAIL	8.740	0		0		Ĭ				0	- 0		0
					201	1000	The same of the same of	2000												1

Cell Ref.	Comment
V-III	TMY-3 Weather Data for Dailbury, CT
1:1	Okcipied hours us per the RFP dutin
×	Total Crack area of windows and doors
×	Avverage ward speed during the exoling and busing seasons
0.	- I col M 1x [col N 1x 5286 = 60 x P70
.de	-1.08 x [col/O] x ([col/B] x O76) = 1000 cooling, L/18 x [col/O] x (Q76 - [col/B]) = 1000 leating
0	- 1.08 « out O s (col B - 077) = 1000 uniting: 1.08 » col O s (Q77 - out B) = 1000 feating
R	[sof P x (sof I - sof K) - 1,000 - 168 x Peg
M	Test O x (Leel J Leel L 1) = 1,000 = P68 x P69 :
4	[sof P] x ([sulf] = [sol R.]) = 1,000 + P67
9	[Fool (2] x (Fool J F Fool L, 13 = 1,000 = 167

Assamptions:	Value	Unit	CELL	Description
			REF	
Single Door - Sides, Top, Sweep (UT)	2	(III)	P43	Exterior Dinns
Single Door - Sweep (UT)	ci	OTD.	P44	Extende Doors
Double Door - Sweep (UT)	4 ((0.0)	PMS	Extende Donre
Interior Seat (L.F.)	048 (LF)	(E)	P46	Perimeter of Doors & Windows at Interior
0	90		P47	
. 0	0		1748	0
0	00		6Fd	0
.0	0.0		150	.0
- 0	00		151	- 0
0	0.0		192	10
.0	00		153	0
0	0		PST	0
.0.	0.0		P55	0
	10		- PSG	.0
.0	00		P57	0
- 0	0 0		158	0
	0.00		6%d	.0
0.	0.0		094	0
0	0		194	.0
.0	0.0		P62	.0
.0	0.0		1963	.0
0	0.0		184	- 0
Total Crisek Area	1.03	SF	99.1	Combination of all Types
Existing Boiler Plant Efficiency	75.0%		290	
Existing Cooling Plant Efficiency	3.52 COP	- do	89d	
Percent Building Ciroled	75.0%		694	
Average Winter Wind Spood	7.0 MPH	STATE OF	P76	
Average Summer Wind Speed		MPH	171	
Crack Area Windward Diversity	15.0%		172	

verage Space Lemperatur	res - After limple	ementalim n	rese		
	Cooling		Hommig		Description
paninto	72.0	920	68.0	920	weare III will amusialitiza astrawe
ntkenpied	72,0	710	0.89	077	

Page 13 of 20

Putnam County, NY Putnam Family & Community Services - 180 Infiltration Reduction

TMY-3 West	TMY-3 Weather Data for Danflury, CT	Danfuer, CT						Operating Hours	SIR			Savings								
Amb. Tetap. Bin deg. F.	Ave-Temp deg. F	M.C.w.n. deg F	M.C Enfluipy Buchma	61-08 Hours	09-16 Hours	17-24 Hears	Total Birr Barry	Ow On-Peak Hee	Unickey Cim- Peak Hrs.	Occ Off-Peak His	Unice Oil- Peal Hz	Total Crack Area (It ²)	Average Wind Speed (MPI)	Infiltration (CFM)	Ope. Heating Cooling Savings (MBH)	UnOcc Heating Cealing Savings (MBH)	Occ Cooling Savings (MMBTI)	Unither Cooling Savings (MMBTU)	Occ. Heating Savings (MMBTU)	UnOce Realing Savings (MMBTU)
V	L	0	D	ы	A	-53	11	1	. 1	×	T	M	×	0	Ь	0	K	x	1	1
Cooling												100				1				
105 to 110	107.5	0.0	00	- 0	0	0	0	.0	.0	0	0	3.6	10,0	475	18	15	0	0		
100 to 105	102.5	9.0	0.0	0	0	0	0	0	0	0	.00	3.6	10:0	475	- 360	13	0	- 0	-	
95 to 100	97.5	0.0	0.0	-0	0	9	- 0	0	0	0	0	3.6	10.0	475	13	10	.0	0		
90 to 95	92.5	76.2	0.0	- 0	17	7	10	.0.	10	0.	0	3.6	10.0	475	- 00	7	0	0		
85 to 90	87.5	73.2	0.00	.0	300	.13	93.	36	37	- 00	3	3.6	10.0	475	*	15	0	.0		
- 80 to 85	82.5	509	0.0	8	167	. 50.	225	135	. 06	0	.0	3.6	10.0	475	.5	61	. 0	0.	7	
75 to 80	77.3	63.3	0.0	35	216	108	350	215	144	0	0	3.6	10.0	475	.3	0	.0	0		
701075	72.5	62.4	0.0	83	267	174	524	313	211	. 0	.0	3.6	10.01	475	- 0	. 0	.0	- 0		
65 to 70	67.5	565	00	221	316	261	298	477	321	0	.0	3.6	10.0	475	0	0	0	0		
60 to 65	62.5	54.0	.00	370	280	+145	012	546	306	- 0.	0	3.6	10:00	475	- 0	0 0	0	- 0	7	
Heating																				
35 to 60	57.5	48.4	0.0	787	248	295	830	497	333	0	.0	3.6	7.0	332	8	0	1		3	.0
50 to 55	52.5	.44.8	0.0	280	288	311	879	526	353	0	.0.	3.6	7.0	332	7					.0.
-35 to 50	47.5	41.5	0'0	791	168	242	701	419	282	0	0	3.6	7.0	.332	*	3				1 1
59:09:09	123	38.0	0.0	335	212	237	- 204	421	283	- 0	-0	3.6	- 2.0	332	-10-	34				e)
35 to 40	37.5	33.3	0.0	330	192	244	766	458	308	0.	0	3.6	7.0	332	12.	. 9				*
30 to 35	32.5	29.6	0.0	236	163	248	547	387	260	0	0	3.6	7,0	332	14	8			1	3
25 to 30	27.5	24.1	0.0	206	60	132	433	259	124	0	. 0	3.6	2.0	332	- 0/0	10				69
2010.25	22.5	21.6	000	150	89	.66	306	183	123	0	0	3.6	- 2.0	332	- 41	12			¥	re
15 to 20	17.5	16.9	0.0	19	. 51	73.	101	114	11	0.	0	3.6	7.0	332	10	13			3	- 1
10 to 15	12.5	10.5	1000	45	57	430	150	- 66	00	0	. 0	3.6	7.0	332	21	15			3	1
5 to 10	7.5	6.4	0.0	- 33	20	37	110	- 99	1	0	0	3.6	7,0	332	. 23	17				-1-
0.103	2.5	61	0.0	38	9	21	22	- 15	15	. 0	. 0.	3.6	7.0	332	23	10			100	-1
-5100	(2.5)	0.0	0.0	24	0	100	55	15	- 01	0	.0:	3.6	7.0	332	. 26	21	7		1	.0
-10 to -5	(7.5)	0.0	0.0	3	0	0	. 3	e)	1	. 0	0	3.6	0.7	332	28	. 22			. 0	0
-15 to -10	(12.5)	-0.0	0.00	. 0	-0:	-0-	0:	-0	- O:	- 10	-0.	3.6	2.0	332	-30	240			0	0
-20 to -15	(17.5)	0.0	0.0	.0.	.0.	0	.0.	.0.	0	. 0	0	3.6	7,0	332	32	. 26			. 0	. 0
-25 to -30	(22.5)	0.0	0.0	- 0	.0	0	. 0	.0.	0	0	.0	3.6	. 02	332	34	28			. 0	.0
				2.620	2.920	2,920	8.760	5.240	3.520	0	0		Ĭ				R	-0	45	-12
											1									

Cell Ref.	Comment
V-III	TMY-3 Weather Data for Darbury, CT
1.1	Overpied hours us per the REP data
×	Total Crack area of windows and doors
×	Average wind speed during the cooling and bouting seasons
0.	
.00	- 1.08 x [col O] x ([col B] - O76) = 1000 cooling. Lt8 x [col O] x (Q76 - [col B]) = 1000 heating
ò	- 1.08 x out O x (cal B - 077) = 1000 uniling, 1.08 x cal O x (Q77 - out B) = 1000 ficating
R	[sof P x (1 sof I] - 1 sol K]) = 1,000 + P68 x P69
k	Lest O Fx (Leel J L Led L 1) = 1,000 = P68 x P69:
	[sof P] x ([sulf] = [sol R]) = 1,000 + P67
9	Tool CTxCLool J L=1 col L D= 1000 = 1967

Assumptions:	Value	Unit	CELL	Description
			HEE	
Hock, Seal (LF).	239	(47)	P43	Exterior Wall at Roof Perimeter
Scal (LF)	287	287 (1.1)	P44	Extense Wall at Roof Permeter
Numble Door - Sweep, Center (UT)	19	(0.0)	PAS	Esterior Doors
interior Seat (L.F.)	312	(LF)	P46	States of Windows at Interior
0	0	0	P47	-0
. 0	0		844	-0-
0	0	0	6Fd	0
.0.	0	.0	P50	.0.
- 0	0	0	PSI	- 0
ė	0	0	192	0
-0	0	10	153	- 0
0	0	0	PST	0
.0.	0	0	P55	0
	0		- PSG	
.0	0	0	P57	.0
.0	0		158	0
. 0	0		6%d	0
.0.	0	0	094	0
0	0	0	194	0
0	0	0	P62	0
.0	0.0	0	163	0
-0	O		1921	- 0
otal Crack Area	3.59 SF	SF	1,66	Combination of all Types
sisting Boiler Plant Efficiency	75.3%		190	
visting Cooling Plant Efficiency	2.93	2.93 COP-	89d	
preent Building Cooled	100005		694	
Average Winter Wind Speed	7.0	7.0 MPH	P76	
sverage Summer Wind Speed	10.0	MPH	171	
Crick Area Windward Diversity.	15.0%		177	

verage Space Lemperat	ures - After Impl	lementalium us	rese			
	Cooling		Honning		Description	
paninno	72.0	920	21.0	910	weare III and anneralines admane	
Occupied	78.0	077	55,0	077		
						п

Page 14 of 20

March Marc	TMY-3 West	TMY-3 Weather Data for Danlury, C.	Bantiney, CT.						Operating Hours	ars.			Savinge								
Hander M.C.W. M.C. Hander M.C. M.C. Hander M.C. M.																	Unitac				
H C D E F F H F H F H F H F H F H	Amb. Tettop Blu dea F	Ave Temp deg. F		M.C. Eathalpy Dtu/Bma	61-0% House	09-16 Hours	17-24 Units	Youl Bire	Oce One Peak Hea		Osc Off-Paik His			Wind Speed (MPI)	Trow Rate (CFM)	Occ. Heating Cooling Savings (MBH)	Heating Cesuling Savings (MBH)	Obe Cooling Savings (MMBTI)	Unche Cooling Savings (MMBTU)	Oce Heating Savings (MMBTIU)	UnOcc Healing Savings (MMBTU)
10 1073 0.00 0.00 0.	V	ш	Ų	B	ā	A	9	=	1	-	×	T.	M	×	0	Ь	0	R	×	1	-
10 107.5 0.00 0.00 0.0 0	Cooling	1																			
10.9 10.25 0.0 0.0 0 0 0 0 0 0 0 0 0 14.3 10.0 119 34 34 34 0 85.9 70.2 0.0 0 0 0 0 0 1.4 10.0 119 3 3 0 85.9 70.2 0.0 0 0 0 0 1.4 10.0 119 3 3 0 85.1 70.2 0.0 0 0 0 0 0 1.4 10.0 119 3 3 0 85 75.3 60.0 0	105 to 110	107.5	0.0	00	0	0	. 0	0	.0	.0	0	0	1.4	10.0	119	191		0	0		
90 97.5 0.0 0.0 0.0 1.4 10.0 10.0 10.0<	100 to 105	102.5	9.0	0.0	. 0	0	0	0	0	0	0	00	1.4	10:0	110	- 7	+	0	· · ·		
55 87.5 70.2 0.0 0 1.4 10.0 119 3. 3. 9. 87.5 77.2 0.0 9 1.4 10.0 1.4 10.0 119 3. 3. 9. 87.5 67.5 67.5 67.5 1.4 10.0 11.4 10.0 11.9 3. 3. 9. 87.5 67.5 67.5 67.5 27.5 22.5 22.5 6. 0 1.4 10.0 119 3. 3. 9. 87.5 67.5	95 to 100	826	0.0	0.0	-0	0	0	- 00	0	0	0	0	1.4	10.0	119.	3	3	.0	0		
86 87.5 0.01 9 14 90 14 100 14 100 114 0.0 14 100 114 0.0 14 100 119 2 2 0 73.73 6.63 6.03 6.03 6.03 6.03 236 239 239 9.0 0 14 100 119 1 0 0 73.73 6.53 6.03 231 316 236 239 359 20 0 0 14 100 119 1 0 0 6.53 450 236	90 to 95	92.5	76.2	0.0	0	17	4	10	- 19	0	0	0	1.4	10.0	- 611		3	0	0		
5 75.5 60.5 60.6 3.4 60.6 1.4 10.0 11.9 1 1 0 75.3 67.3 60.4 63.4 60.6 63.4 60.6 1.4 10.0 11.9 1 1 0 75.3 65.3 60.4 60.0 53.4 60.0 53.4 60.0 1.4 10.0 11.9 1 1 0 0 0 1 1 10.0 10.0 0 0 0 1 1 10.0 11.9 1 0 0 0 0 1 1 10.0 1 0 0 0 0 0 0 0 1 1 10.0 0 </td <td>85 to 90</td> <td>87.5</td> <td>73.2</td> <td>0.00</td> <td>.0</td> <td>-080</td> <td>13</td> <td>93.</td> <td>93</td> <td>- 10</td> <td>.00</td> <td>0</td> <td>1.4:</td> <td>10.0</td> <td>119</td> <td>64</td> <td>2</td> <td>0</td> <td>.0</td> <td></td> <td></td>	85 to 90	87.5	73.2	0.00	.0	-080	13	93.	93	- 10	.00	0	1.4:	10.0	119	64	2	0	.0		
10 73.5 63.4 0.0 3.4 2.0 1.4 10.0 11.9 1 0 0 67.3 57.5 67.4 0.0 53.4 67.0 6.0 1.4 10.0 11.9 0 0 0 0 1.4 10.0 11.9 0 0 0 0 0 1.4 10.0 0 0 0 0 0 0 1.4 10.0 11.9 0 0 0 0 0 0 0 0 0 1.4 10.0 11.9 0	- 80 to 85	82.5	- 60.5	000	8	167	50.	225	223	0	0	0	1.4	10.0	- 611	-		. 0	0		
5 6.2.5 6.0.4 6.0	75 to 80	77.3	63.3	0.0	35	216	108	350	359	0	0	.0	1.4	10.0	119	-	1	0	0		
0. 57.3 59.6 70.0 70.0 1.4 70.0 11.4 70.0 11.9 0 0 0 0 1.4 70.0 11.9 0 1.4 70.0 11.0 0 <td>701075</td> <td>72.5</td> <td>62.4</td> <td>0'0</td> <td>83</td> <td>267</td> <td>174</td> <td>524</td> <td>524</td> <td>0</td> <td>0</td> <td>0.</td> <td>1.4</td> <td>10,01</td> <td>119</td> <td>- 0</td> <td>0</td> <td>0.</td> <td>- 0</td> <td></td> <td></td>	701075	72.5	62.4	0'0	83	267	174	524	524	0	0	0.	1.4	10,01	119	- 0	0	0.	- 0		
5 440 0.0 270 344 0.02 340 0.0 141 140 114 140 0 0 0 0 141 140 140 0 0 0 0 0 0 141 700 841 2 2 2 0 0 0 141 700 841 2 2 2 0 0 0 141 700 841 2 2 2 0 0 0 141 700 841 2 2 2 0 0 0 0 141 700 841 2 2 2 0 0 0 0 0 141 700 841 2 2 2 0	65 to 70	67.5	59.5	0'0	221	316	261	298	798	0	- 0	.0	1.4	10.0	119	- 0	- 0	. 0	0		
67 57.5 48.4 0.0 257 236 8.0 8.0 0 0 1.4 7.0 841 2 57 47.3 41.8 0.0 250 236 236 311 879 879 0 0 1.4 7.0 841 2 51 41.3 0.0 250 250 237	60 to 65	62.5	54.0	.00	270	280	775	012	-012	-0	- 0	0	1.4	10:0	110	- 0	0	0	- 0		
573 484 0 0 273 284 289 0 0 0 0 14 70 84 2 473 448 0 0 280 226 287 371 879 0 0 14 70 84 2 473 448 0 0 280 247 701 879 0 0 14 70 84 2 473 443 0 0 282 247 704 704 0 0 14 70 84 2 873 60 0 0 0 14 70 84 2 873 834 60 0 0 0 0 14 70 84 3 273 244 760 0 0 0 14 70 84 4 273 248 187 437 437 437 447 447 4 4 4 4	Heating																				
47.5 44.8 0.0 200 200 200 14 7.0 84 2 47.5 44.8 0.0 201 14 7.0 84 2 47.5 44.5 40.0 20.0 0 0 14 7.0 84 2 42.1 34.5 41.2 24.4 76.6 76.6 76.6 0 0 14 7.0 84 2 23.1 34.5 34.5 24.7 76.6 76.6 76.6 0 0 14 7.0 84 3 23.2 34.5 34.5 44.5 46.7 64.7 64.7 64 0 0 14 7.0 84 4 23.2 34.6 46.7 46.7 64.7 64.7 64.7 64.7 64.7 64.7 64.7 64.7 64.7 64.7 64.7 64.7 64.7 64.7 64.7 64.7 64.7 64.7 64.7	35 to 60	57.5	48.4	0.0	287	248	295	830	830	0	0	.0	1.4	7.0	8.4	2	ri			5	0
47.3 41.5 0.0 20.1 18.8 24.7 70.1 0.0 0 0 0 1.4 70.0 84.1 5 27.5 3.83 0.0 25.9 1.8 27.0 0.0 0 0 1.4 70.0 84.1 5 27.5 2.83 0.0 2.84 766 0 0 0 1.4 70.0 84.1 5 27.5 2.94 0.0 67.0 0 0 0 1.4 70.0 84.1 4 27.5 2.94 0.0 67.0 0 0 0 1.4 70.0 84.1 4 27.5 2.94 0.0 67.0 0 0 0 1.4 70.0 84.1 4 27.5 2.1 0.0 0 0 0 0 0 0 0 1.4 70.0 84.1 4 2.5 2.1 2.1 2.1 2.1<	50 to 55	52.5	44.8	0.0	280	288	311	879	879	0	0		1.4	7.0	- 24	. 2	3			*	- 0
47.3 38.9 0.0 23.5 21.5 23.7 704. 706. 0 0 1.4 70. 84. 3 87.3 23.9 10.0 23.0 17.2 24.8 76.0 76.0 0 0 1.4 70. 84. 4 22.3 23.0 16.0 23.6 16.1 24.8 64.7 0 0 0 1.4 70. 84. 4 22.3 23.1 16.0 23.6 16.7 24.8 64.7 0 0 0 1.4 70. 84. 4 17.3 16.2 24.8 45.7 0 0 0 0 1.4 70. 84. 4 17.3 16.2 16.1 191 191 0 0 0 1.4 70. 84. 5 17.3 16.2 16.1 191 191 191 0 0 0 1.4 70. 84.	-45 to 50	47.5	41.5	0'0	201	168	242	107	107	0	0	0	1.4	7.0	84		- 2			ж.	.0
97.5 3.8.3 0.0 3.80 19.0 3.80 19.0 3.84 17.0 8.44 3.66 0 0 0 1.4 7.0 8.44 4 27.5 2.9.6 0.0 16.3 2.88 64.7 64.7 0 0 1.4 7.0 8.44 4 27.5 2.1.6 0.0 1.5 2.88 64.7 64.7 64.7 67.0 8.4 4 4 17.3 1.6.0 0.0 1.6 0 0 1.4 7.0 84.1 4 2.5 1.6.5 0.0 0 0 0 0 1.4 7.0 84.1 4 2.5 1.6.5 0.0 0 0 0 0 1.4 7.0 84.1 4 2.5 0.4 0 0 0 0 0 0 1.4 7.0 84.1 6 2.5 0.4 0 1.0	40 to 45	123	38.0	0.0	335	212	237	704	704	- 0	. 0	0	-13	02	.84	3.	3.			3	.0
3.2.5 2.9.6 16.3 248 64.7 64.7 67 0 0 1.4 7.0 844 4 22.5 2.16 0.0 256 16.7 438 43.7 0 0 0 1.4 7.0 844 4 22.5 2.16 0.0 18.9 0.6 77 306 0 0 0 1.4 7.0 844 5 17.3 16.9 0.0 17.0 0 0 0 1.4 7.0 844 5 17.3 16.9 0.0 15.0 0 0 0 1.4 7.0 844 5 2.5 0.4 0.0 0 0 0 0 1.4 7.0 844 6 2.5 0.0 0 0 0 0 0 1.4 7.0 844 7 1.2 0.0 0 0 0 0 0 0	35 to 40	37.5	33.3	0.0	330	192	244		766	0	0	0	1.4	7.0	84	1.46	3			\$.0
22.5 23.1 0.0 200 0.9 137 433 0.0 0 0 14 7.0 84 4 17.3 18.0 0.0 18.0 48.0 18.0 48.0 0 0 0 14 7.0 84 4 17.3 18.0 18.0 19.0 0 0 0 14 7.0 84 4 25.4 18.0 19.0 10.0 0 0 14 7.0 84 5 25.5 6.0 19.0 10.0 0 0 14 7.0 84 6 25.5 6.0 19.0 150 0 0 0 14 7.0 84 6 25.5 6.0 17 18.0 10.0 0 0 14 7.0 84 7 25.5 6.0 10 0 0 0 0 14 7.0 84 7	30 to 35	32.5	29.6	0'0	236	163	248	547	. 647	· · · · · ·	0	0	1.4	7.0	- 84	4				-	0
2.5. 2.16 0.01 159 688 77 340 366 0 0 0 1.4 70 841 5 1.2.5 1.6.5 0.0 67 0 0 1.4 70 841 5 1.2.5 1.6.5 0.0 0 0 0 1.4 7.0 841 6 2.5 0.4 0.0 1.5 1.5 1.6 1.0 0 0 1.4 7.0 841 6 2.5 0.0 0.0 0 0 0 0 1.4 7.0 841 6 7.5 3.4 0 1 2.5 0 0 0 1.4 7.0 841 6 7.5 3.4 0 1 2.5 0 0 0 1.4 7.0 841 7 7.5 3.4 0 0 0 0 0 1.4 7.0 841 7<	25 to 30	27.5	24.1	0.0	206	105	132	433	433	0		. 0	1.4	7.0	84	4	Ť			3	. 0
17.3 16.5 16.0 16.0 17.1 21.1 17.5 19.1 19.1 0 0 0 0 1.4 7.0 844 5 5 17.5	2010.25	22.5	.21.6	0.0	150	89	79.	306	306	0	0	0	1.4	7.0	84	. 5				2	.0
12.5 64.5 60.0 54.5 57.7 449 1590 150 0 0 0 14 7.0 844 6 23.5 64.4 60.0 54.5 20 21.1 184 185 0 0 0 14 7.0 844 7 23.5 64.0 60.0 54.0 0 21 184 185 0 0 0 14 7.0 844 7 23.5 60.0 60.0 54 0 1 25 25 0 0 0 14 7.0 844 7 23.5 60.0 60.0 3.4 0 1 25 25 0 0 0 0 14 7.0 844 7 23.5 60.0 60.0 0 0 0 0 0 14 7.0 844 7 23.6 60.0 60.0 0 0 0 0 0 0 14 7.0 844 8 23.6 60.0 60.0 0 0 0 0 0 0 0 24.6 7.6 7.6 7.6 7.6 7.6 25.6 7.6 7.6 7.6 7.6 7.6 25.7 7.6 7.6 7.6 7.6 7.6 25.8 7.6 7.6 7.6 7.6 25.8 7.6 7.6 7.6 7.6 25.8 7.6 7.6 7.6 7.6 25.8 7.6 7.6 7.6 7.6 25.8 7.6 7.6 7.6 7.6 25.8 7.6 7.6 7.6 25.8 7.6 7.6 7.6 25.8 7.6 7.6 7.6 25.8 7.6 7.6 7.6 25.8 7.6 7.6 7.6 25.8 7.6 7.6 7.6 25.8 7.6 7.6 7.6 25.8 7.6 7.6 25.8 7.6 7.6 25.8 7.6 7.6 25.8 7.6 7.6 25.8 7.6 7.6 25.8 7.6 7.6 25.8 7.6 25.8 7.6 7.6 25.8 7.6	15 to 20	17.5	16.9	0.0	19	. 21	73.	101	161	0	0.	0	3.4	7.0	8.4	91	9			3	.0.
25 6.4 6.0 6.3 20 37 110 110 0 0 0 1.4 7.0 84 0 (2.5) 1.0 0.0 58 2.0 0 0 1.4 7.0 84 0 (2.5) 0.0 0.0 0.0 0 1.4 7.0 84 0 (2.5) 0.0 0.0 0 0 0 0 1.4 7.0 84 7 (1.5) 0.0 0 0 0 0 0 1.4 7.0 84 7 (1.5) 0.0 0 0 0 0 0 1.4 7.0 84 8 (17.5) 0.0 0 0 0 0 0 0 1.4 7.0 84 9 (17.5) 0.0 0 0 0 0 0 0 1.4 7.0 84 9 (27.5)	10 to 15	12.5	10.5	1000	15	57	14%	150	150	.0	- 0	. 0	1.4	7.0	84		9				0
2.5 1.9 0.0 0.0 3.4 6 2.1 8.5 0 0 0 1.4 7.0 8.4 7 (7.25) 0.0 0.0 0.0 0.0 0 0 0 0 0 1.4 7.0 8.4 7 (7.25) 0.0 0.0 0 0 0 0 0 0 1.4 7.0 8.4 8 (7.75) 0.0 0.0 0 0 0 0 0 1.4 7.0 8.4 8 (7.75) 0.0 0 0 0 0 0 0 1.4 7.0 8.4 8 (2.75) 0.0 0	5 to 10	7.5	6.4	0.0	- 33	. 20	37	110	- 110	0	0	0	1.4	7,0	84	9.	- 9				. 0
(75) 0.0 0.0 23 0 0 1 25 0 0 0 0 14 70 84 7 7 (25) (25) 0.0 0.0 0 14 70 84 7 7 (25) (25) 0.0 0.0 0 0 14 70 84 7 7 (25) 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.103	235	61	0.0	505	9	. 21	X5	88	0	0	.0.	1.1	7.0	8.1	4	7			1	- 0
(125) a.0. a.0. a.0. a.	-5100	(2.5)	0:0	0.0	24	0	T	55	25	0	0	.0:	1.4	7.0	78	7.	1	1		0	0
(125) 443 hb 0 0 0 0 0 0 0 0 0 0 84 3 (175) 0.00 0.00 0.0 0 0 0 0 0 0 0 0 0 0 0 0	-10 to -5	(7.5)	0.0	0.0	.3	.0	0	3	3	0	. 0	0	1.4	0.2	8.1	8	1			. 0	0
(275) 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-15 to -10	(12.5)	-0.0	0.01	0	-0:	-0	0.	.0	0	- 10	0	3.4	. 2,0	18	8:	×			0 .	0
(225) 00 00 0 0 0 0 0 0 0 0 14 70 84 9	-20 to -15		0.0	0.0	-0.	-0-	0	. 0	.0	0	.0.	-0	1.14	7.0	84	6	8			0 .	. 0
2,920 8,760 8,760	-25 to -30	Ц	0.0	0.0	0	.0	0	0	.0	0	. 0	.00	1.4	7.0	84	10.	6			. 0	.0
					2.620	2.920	2,920	8.760	8.760	0	.0	0					Ī	0 -	.0	38	0 -

Cell Ref.	Comment
Vell	TMY-3 Weather Data for Daibury, CT
1.1	Overpied hours as per the RFP data
Σ	Total Crack area of windows and doors
×	Average ward speed during the custing and beaming seasons
0	
. Di	-1.08 x [col O] x ([col B] - O76) = 1000 cooling, 1.08 x [col O] x (Q76 - [col B]) = 1000 heating
0	- 1.08 s. out O [s. ([col B] - 077) = 1000 uniling: 1.08 s. [col O] s. (Q72 - [out B]) = 1000 beating
R	[sof P] x (sof T] = [sof K] y = 1,000 + P68 x P69
let.	Lest O x (, Leol J T = Lord L 1) = 1,000 = 1968 x, 1969
ė	[so(P]x([sulf] = [ssl R.1) = 1,000 = Pt/7
9	f ool (2) x (f ool 3) f = 1 ool 11, 13 = 1,000 = 1967

Assumptions:	Value	Unit	CELL	Description
			4.42	
Hock, Sent (LF)	102	(4.1)	P43	Building #1 Perimeter
Single Door - Sides, Top, Sweep (UT)		(UID)	P44	Building #1 Exterior Doors
Single Door - Sweep (UT)		(0.0)	PAS	Building #1 Extensy Doors.
Danble Door - Sweep, Center (191)		(0.12)	P46	Building #1 Exterior Doors
	1		1	
Total Crock Area	1.36	SF	99,1	Combination of all Types
Existing Boiler Plant Efficiency	71.0%		190	
Existing Cooling Plant Efficiency	2.93	2.93 COP	89.1	
Percent Building Cooled	100.00%		694	
Average Winter Wind Speed	7.0	7.0 MPB	P70	
Average Summer Wind Speed	10:01	MPH	171	
Crack Area Windward Diversity	100.05		172	

verage Space Lemperatu	res - After lingl	ementalian u	LEAD		
	Cooling	1	Honnig		Description
paninsa	72.0	920	27.0	920	average femilieranne for all areas
nOccupied	72,0	077	75.0	077	

Page 15 of 20

TMY-3 Weat	TMY-3 Weather Data for Danfury, CT	Dantiney, CT.					200	Operating Hours	S		s	Savinge								
				T				ij		,			4.5		Ope. Heating	7-				
Amb. Temp. Bin deg F	Ave Temp deg F	M.C.W.R.	M.C Earbalpy Btu Bua	01-0% Hours	01-08 House 09-16 House	17-24 Hears	Total Bire Biany	Oxy Ore-Peak Hrs	Untike On- Peak Hrs.	Occ 00-Posk United Off- His Posk His	UnOcc 00: Peak Hrs	Total Crack Area (ft ²)	Wind Speed (MPH)	Trow Fate (CFM)	Savings (MBH)	Savings (MBH)	Che Cooling Savings (MMBTU)	Cooling Savings (MMBTU)	Occ. Heating Savings (MMBTU)	Savings Savings (MMBTU)
V	В	J	D	ā	A	9	11	-	. 1	×	1	W	×	0	ь	0	R	x	1	-
Cooling																				
105 to 110	107.5	0.0	0.0	-0	0	. 0	0	.0	.0	0	0	6.0	10.0	122	ipi	. 5	0	0		
100 to 105	102.5	9.0	0.0	. 0	0	0	- 0	0	0	0	.00	6.0	10:0	122	77	+	0	- 0		
95 to 100	97.8	0.0	0.0	-0-	0	0	- 0	0	0	0	0	60	10.0	122	16	3	.0	0		
90 to 95	92.5	76.2	0.0	- 0	17	7	10	. 19	0	0.	0	60	10.0	122		3	0	0		
85 to 90	87.5	73.2	10:00	-0	- 280	.13	1/3.	93	- 33	-0.		6.0	10:0	122	0.0	2	0			
- 80 to 85	82.5	5.69	0.0	8	167	50.	225	223	0	- 0	.0	6.0	10.0	122	1		. 0	0.		
75 to 80	77.5	63.3	0.0	35	216	108	350	359	0	0	0	60	10.0	122		. 1	0	. 0		
701075	72.5	62.4	0.0	83	. 267	174	524	524	0	. 0	.0	6.0	10.01	122	- 0	0	0.	. 0		
65 to 70	67.5	50.5	00	. 221	316	261	798	798	0	- 0	.0	6.0	10.0	122	0	0	0	0		
60 to 65	62.5	34.0	.00	270	280	344	1012	-012	- 00	- 40:	0	0.0	10:00	122	- 0	0	0	- 0 -	, ,	
Heating																				
35 to 60	57.5	48.4	0.0	287	248	295	830:	830	0	0.	.0	60	7.0	\$5	1				1	.0
50 to 55	52.5	.14.8	0.0	280	288	311	628	879	0	0	.0	6.0	2.0	385	- 1	1				-0
-45 to 50	47.5	41.5	0'0	791	168	242	107	701	0	0	0	6.0	7.0	-85	. 2	2			- 2	0
40 to 45	423	38.0	0.0	335	212	237	704	701	0	- 0	-0	6.0	. 07	-85	27	. 2			. 2	0
35 to 40	37.5	33.3	0.0	330	192	244	766	766	0	0	0	6'0	7.0	56	3.	3			3	.0
30 to 35	32.5	29.6	0.0	236	163	248	647	. 647	.0.	0	0	6.0	7.0	- 85	3	3			3	0
25 to 30	27.5	24.1	0.0	206		132	433	433	- 0	0		6.0	7.0	8.5	- 4	*				.0
2010.25	22.5	21.6	0.00	150	89	79	306	306	0	0	0	6.0	7.0	85	- 4	4			2	0
15 to 20	17.5	16.9	0.0	19	. 21	73.	161	161	0	.0.	0	0.0	7.0	-85	7				16 6	.0
10 to 15	12.5	10.5		45	57	148	150	150	- 0	- 0	. 0	6.0	7.0	82	41	- 5				.0
5 to 10	7.5	- 6.4	0.0	- 33	20	37	110.	0.00	0	0	0		7.0	85	3	. 3				.0
0.103	2.5	61	0.0	38	. 9	21	契	- 58	0	. 0	.0	6.0	7.0	58		- 9			- T	- 0
-5100	(2.5)	0.0	0.0	24	0	100	35	25	0	0	.0:	6'0	7.0	56	- 6	9			0 0	- 0
-10 to -5	(7.5)	0.0	0.0	3	.0	0	. 3	3	0	. 0	0	.00	0.2	\$8	1	1			0	0
-15 to -10	(12.5)	-0.0	- 10.0	- 0	-00-	-0-	. o.	.0	-0-	- 10	-0.	0.00	7.0	85	7	7			0	0
-20 to -15	(17.5)	0'0	0.0	-0.	-0-	0	. 0	.0	0	.0.	-0	6.0	7.0	88	8	8			0	.0
-25 to -30	(22.5)	0.0	0.0	0	.0	0	. 0	.0.	0	. 0	.00	6.0	. 02.	85	60	80			. 0	-0
				3.690	3 450	3 030	17VI	8.760	0		0						0	- U	10	0
			1	1777	6.740	41727	00//00	0,700											1.0	

Cell Ref.	Comment
N-III	TMY-3 Weather Data for Daibury, CT
1:1	(Nexapired hours us per the RFP data
×	Total Crack area of windows and doors
×	Avyrage wind speed during the cooling and housing seasons
0.	1 Sol M x col N x 5286 = 60 x P70
Dr.	- 1.08 x [col O] x ([col B] + O76) = 1000 cooling. L/08 x [col O] x (Q76 + [col B]) = 1000 heating
0	- 1.08 s.l out O. J.s. (Leal B. J 077.) = 1000 suntime; 1.08 s.l eat O. J.s. (Q77 Foul B. J.) = 1000 Beating.
×	[pol P] X (col I] - col X]) = 1,000 PS x Pep
k	Led C(1x(,Led J.T) = Lud L.1.) = Lunn = P68 x P69:
d.	[sol P] x([wil1] = [sol R.] > = 1,000 = Ps7
9	[[col (C] x ([col J] = [col 1,]) = 1,000 < 1967

Assumptions:	Value	Unit	CELL	Description
			REF	
-9	0.00		P43	000
.0	0.0	- 0	P44	- 0
0	0	0	FMS	.0
0	0	0	P46	0
Single Door - Sides, Top, Swocp (UT)		(III)	L#d	Dailding 23.4 Exterior Doors
Overliead Door Weather Strip - Sides, Tops	15	(111)	1448	Budding #2.3.4 Overlead Dones
-0	00	0	6rd	0
.0.	0.0		150	.0.
.00	00	0	PSI	- 0
-0	0	0	1922	0
-0	0 0	70	153	- 0
0	00	0	PST	0
.0.	0.0	0	P55	0
	0		- 58d	.0
.0	0	0	PS7	0
.0	0	0	1958	0
	0 0		6%d	0
0.	0	0	1960	0
0	0	0	194	0
0	0	. 0	P62	0
.0	0.0		1963	.0
-0	0		1981	- 0
Total Criek Area	0.92 SE	JS.	1866	Combination of all Types
Existing Boiler Plant Efficiency	75.0%		290	
Existing Cooling Plant Efficiency	2.93 COP	COP	89d	
Percent Building Cioled	50.0%		694	
Average Winter Wind Speed	2.0	7.0 MPH	P70	
Average Summer Wind Speed	10:0 MPU	MPH	P71	
Crack Area Windward Diversity.	15.05u		172	

erage Spines i emperatur	res - Affer Impli	ementalim i	CENE		
	Cooling		Hennig		Description
panins	72.0	920	0.00	920	мене по му анискайна обизме
Occupied	72,0	710	10'99	077	

Page 16 of 20

TMY-3 Wead	TMY-3 Weather Data for Danfury, C.I.	Danimey, CT.						Operating Hours	103			Savinge								
																Untipoc				
Amb. Tetap	- 5	-	M.C. Enthalpy	1	1000		Youl Bir.	Ow On-Peak	Unition On-	Talk A	-	Total Crack	Average Wind Speed	Infiltration Trow Rate	Ope, Heating Cooling Savings	Heating Cealing Savings	Occ Cooling Savings	UnObe Cooling Savings	Occ. Heating Savings	UnOce Beating Savings
Diff deg 1	deg. T	deg. F	Lista Innia	ULSAN CHOUSE	529-10-110H/S		Clotter	10.0	Frank Hrs.	103	Pent Mrs	Arres (III.)	(11716)	(CEM)	(MESH)	(NEESEL)	(MEMBER CO)	(MANIESTL)	4	(MARKELL)
V	В	3	D	3	P	C	- 11	_		×		M		0	Ь	0	R	x	1	- 0
Cooling	1																			
105 to 110	107.5	0.0	0.0	0	0	0.	0	0	0.	0	0	17.	10,0	463	18	18	0	0		
400 to 105	102.5	9.0	0.0	0	0	0	-0	0	0	0	000	.2.1	10:0	+63	- (19	15	0	- 0		
95 to 100	82.8	0.0	0.0	-0	0	9	- 0	0	0	0	0	77	10.0	463	13	13	.0	0		
90 to 95	526	76.2	0.0	0	17	7	10	- 19	0	0.	0	- 57	10.0	463	10	10	0	0		
8510.90	87.5	73.2	0.00	- 0	- 300	13	93.	93	- 10	0.	7)	2.1	10.0	-463	×	×	0	0.	2	
- 80 to 85	82.5	- 603	0.0	8	167	. 50.	225	223	0 -	0	.0	. 2.1	10.0	463	. 5	. 5	. 0	0.		
75 to 80	77.5	63.3	0.0	35	216	108	350	359	0	0	0	2.1	10.0	463	16	3	0	. 0		
701075	72.5	62.4	0.0	83	. 267	174	524	524	. 0	. 0	.0	2.1	10.01		- 0	0	0	. 0		
65-to-70	67.5	505	00		316	261	298	798	0	0	0	16	10.0	-463	0	0	0	0		
60 to 65	62.5	54.0	0.00	370	280	175	012	-012	- 00	- 0.	0	2.1	10:00	463	- 0	J = 0. (0	- 0		
Heating																				
35 to 60	57.5	48.4	0.0	287	248	295	830:	830	0	0	.0	172	7.0	321	4	4			- 5	.0
50 to 55	52.5	14.8	0.0	280	288	311	879	879	0	0	.0.	-21	7.0	324	- 6				7	-0
- 45 to 50	47.5	41.5	0'0	791	168	242	701	104	0	0	0	2.1	7.0	.324	8	8			7	0
- 40 to 45	423	38.0	0.0	335	212	237	704	701	-0	- 0	-0	-2.1	02	334	- 10	10 -			- 6 .	0
35 to 40	37.5	33.3	0.0	330	192	244	766	766	0	0.	0	2.1	7.0	324	11	11.			D	0
30 to 35	32.5	29.6	0'0	236	163	248	647	. 647	.0	0	0	17.	7.0	324	13	. 13			. 11	0
25 6 30	27.5	24.1	0.0	206		(32)	433	433	-0	0	0	- 17	7.0	324	- 150					0
2010.25	22.5	21.6	0.0	150	89	- 30	306	306	0	0	0	2.1	7.0	324	112	17.			0	0
15 to 20	17.5	16.9	0.0	19	. 51	73.	101	161	0	0	0	2.1	7.0	324	181	38			. 4	.0
10.00 15	12.5	10.5	000	45	57	430	150	150	-0	0	. 0	3.5	7.0	324	20	20				0
5 to 10	7.5	6.4	0.0	. 33	20	37	110	110	0	0	0	.2.1	7.0	324	22	. 22			3 -	.0
0.003	2.5	61.	0.0	385	. 9	21	22	58	0	. 0	.0	2.1	2.0	321	27	24			3	
5 to 0	(2.5)	0.0	0.0	24	0	110	55	25	0	0	.0:	2.1	7.0	324	. 25	25			1 1	. 0
-10 to -5	(22)	0.0	0.0	.3	.0	0	. 3	3	0	. 0.	0	151	. 2.0	324	. 27	. 22				0
01-78 51-	(12.5)	-0.0	10.0	. 0	-00-	-0-	0.	.0	-0-	- O -	- 0.	2.0	. 2.0	324	-20	39			. 0	0
-20 to -15	(17.5)	0.0	0.0	.0.	.0.	0	.0.	.0.	0	.0.	.0	(2.1)	7.0	324	31	31			0	. 0
-25 to -30	(22.5)	0.0	0.0	0	.0	0	. 0	.0	-0	0	.00	2.1	7.0	324	32	32				0
				3.630	3 600	2000	0.740	0.760	0	.0	0								40	0
				40,000	200,000	41747	201100	0,770											1	

Cell Ref.	Connect:
Nell.	TMY-3 Weather Data for Darbury, CT
7.	Overpied hours us per the RFP data
×	Total Crack area of windows and doors
×	Average ward speed during the excling and breating seasons
0.	F1 coli M 1x [col N 1x 5286 = 60 x P7t1
.ib.	-1.08 x [col/O [x ([col/B [+ O76) + 1000 cooling, 1.08 x [col/O [x (Q76 + [col/B]) + 1000 heating
ò	- 1.08 x oil O x (col B - 077) = 1000 uniling, 1.08 x col O x (Q77 - oil B) = 1000 ficating
R	[sot P x (1 sot 1] - 1 sot X (1) = 1,000 - 198 x Peg
k	cel () x (, Led J, J, L,
4	[co(P)x([sult] = [col R.]) = 1,000 = Pk7
9	[ool (2] x (1 ool) 1 = 1 ool (1, 1) = 1,000 = 1467

Assumptions	Value	Link	CELL	Description
			REF	
-0	0		P43	000
	0	. 0	bttd	- 0
0	00	0	PAS	.0
0	0	0	P46	0
Single Door - Sides, Top, Swaep (UT)	C#	2 (UI)	L#4	Dailding 23.4 Esterior Doors
Nerlical Door Weather Strip - Sides, Pays	4	(111)	148	Building #2.3.4 Overhead Dones
.0	0	0	6td	0
0.	0	. 0	150	.0.
- 07	0	0	P51	- 0
ò	0		P52	0
.0	0	0	153	- 0
0	0	0	PS4	0
.0.	0	0	P55	.0
	0		P56	.0
.0	0		15d	.0
.0	0		158	n n
- 0	0 0		6%d	0
.0.	00	0	09d	0
0	o o		194	0
.0	0		P62	0
.0	0.0		1963	.0
-0	0	4).	1,84	- 0
	13016		780	4
our crack river		36	1.00	Combination of all 1950s
Sesting Boiler Plant Efficiency.	79.0%		190	
Kisting Cooling Plant Efficiency	2.93 COP	COP	89d	
Preent Building Cooled	100.0%		694	
Average Winler Wind Speed	2.0	7.0 MPH	P70	
Average Summer Wind Speed	10:01	MPH	P71	
Cruck Area Windwurd Diversity	25.054		172	

Average Space Lemps	anares - After Imp	icinici (initia)	rese		
	Cooling		Henning		Description
(Seamond)	72.0	920	20:0	920	леже Па тії этпетацітэї эдизэле
Untheorpied	72,0	077	70.0.	077	

Page 17 of 20

TMY-3 West	TMY-3 Weather Data for Dantuey, CT	Dantiney, CT						Operating Hours	SJB		3	Savings								
Amb. Tetap Diu deg. F	Ave Temp deg. F	M.C.W.R. deg. F	M.C Eathalpy Bucliona	01-08 Hours	01-0% Hours 99-16 Hours	17-24 Hears	Yearl Bire Hearw	Over One-Peak Hea	Unition On- Peak Hrs.	Unicky On: Coc Off-Peak Peak Hrs. Hrs.	Unice 00- Peak libs	rack It's	Average Wind Speed (MPI)	Indilitation (CFM)	Ope. Heating Cooling Savings (MBH)	Unibe Heating Cealing Savings (MBH)	Oct Cooling Savings (MMBTI)	Uncke Cooling Savings (MMBTU)	Occ. Heating Savings (MMBTU)	UnOce Besting Sevings (MMBTU)
V	8		D	3	4	25	Ш	1	r.	х	Τ.	M	×	0	.d	0	R	x	1	- 1
Cooling																				
105 to 110	107.5	0.0	0.0	-0	-0	0	0	.0	.0.	0	0	1.1	10,0	233	0.	- 6	0	0		
100 to 105	102.5	0.0	0.0	0	0	0	0	0	0	0	.00	17	10:01	.233	*	×	0	- 0	1	
95 to 100	87.8	0.0	0.0	-0	0	0	- 0	0	0	0	0	1.1	10.0	233	9	0	0	0		
90 to 95	92.5	76.2	0.0	- 0	17		10	- 19	0	0.	0	3.1	10.0	233	W.	- 5	0	0		
85 to 90	87.5	73.2	0.0	- 0	- 80	.13	93.	93	- 0	- 0.		att -	10:00	233	4	. 4.	0	0.		
- 80 to 85	82.5	- 69.5	0.0	8	167	50.	. 225	223	0	0	0	1.1	10.0	233		3	. 0	0	7	
75 to 80	77.8	63.3	0.0	35	216	108	350	359	0	0	.0	1.1	10.0	233	-	1	.0	0		
701075	72.5	62.4	0.0	83	267	174	524	524	0	. 0	.0	1.1	10.01	233	. 0	. 0	.0	. 0		
65-to-70	67.5	50.5	00		376	261	298	798	0	0	.0	- T.E.	10.0	233	0	0	0	0		
60 to 65	62.5	54.0	0.00	370	280	344	1012	216	- 0	- 0.	0	340	1000	:233		0	0	- 0	, ,	
Heating																				
35 to 60	57.5	48.4	0.0	287	248	295	830	830	0	0	.0	1.1	7.0	163	in.	2			5	.0.
50 to 55	52.5	-14.8	0.0	280	288	311	879	879	0	0	.0.	1.1	.0.2	163	. 3	en				-0
-45 to 50	47.5	41.5	0.0	791	168	242	701	701	0	0	0	1.1	7.0	163	. #	4.			4	.0
40 to 45	42.3	38.0	0.0	335	212	237	704	704	-0	- 0	0	3.0	7.0	163	- 3					0
35 to 40	37.5	33.3	0.0	330	192	244	766	766	0	0	0	3.0	7.0	163	. 0	. 0				.0
30 to 35	32.5	29.6	0.00	236	.163	248	647	. 647	.0.	. 0	0	1.1	7.0	163	7	. 7			. 5	0
25 to 30	27.5	24.1	0.0	206	60	(32	433	433	- 0	0		1.1	2.0	163	. X	7			- +	. 0
2010.25	22.5	21.6	0.0	150	89	79.	306	306	0	0	0	1.1	7.0	163	- 6	8			3	.0
15 to 20	17.9	16.9	0.0	. 67	. 21	73.	161	161	.0	0	0	3.1	7.0	163	10	- 6				.0
10.00 15	12.5	10.5	000	45	57	4%	150	150x	- 0	- 0	. 0	3.1	7.0	163	- 10	10:			. 2	.0
5 to 10	7.5	6.4	0.0	. 33	20	37	110	-0110	0	0	0	1.1	7.0	163	- 13	11-11			1	.0.
0.003	2.5	61	0.0	385	- 9	. 21	22	\$85	0	. 0	.0	4.1	2.0	163	12	12			1	- 0
-510.0	(2.5)	0.0	0.0	24	0	100	55	25	0	0	.0	1.1	7.0	163	(3	13.			0 0	.0
-10 to -5	(22)	0'0	0.0	.3	.0.	0	3	3	0	. 0	0	1.1	0.7	163	14	14				0
-15 to -10		-0.0	10.0	. 0	-00-	-0-	· 0·	.0	-0-	- 10	0.	3.0	2.0	163	15	. 15			. 0	0
-20 to -15		0.0	0.0	.0.	- 00	.0	. 0.	.0.	.0	.0	0	303	7,0	163	- 16	15			0 .	. 0
-25 to -30	(22.5)	0.0	0.0	0	.0	0	. 0	.0.	0	0	0	1.1	7.0	163	- 11	36				-0
				2.920	2,920	2,920	8,760	8,760	0	0	0		Ĭ				0 -	0	66	0 -

Cell Ref.	Comment
N-III	TMY-3 Weather Data for Daibury, CT
1:1	(Nexapired hours us per the RFP data
×	Total Crack area of windows and doors
×	Avyrage wind speed during the cooling and housing seasons
0.	1 Sol M x col N x 5286 = 60 x P70
Dr.	- 1.08 x [col O] x ([col B] + O76) = 1000 cooling. L/08 x [col O] x (Q76 + [col B]) = 1000 heating
0	- 1.08 s.l out O. J.s. (Leal B. J 077.) = 1000 suntime; 1.08 s.l eat O. J.s. (Q77 Foul B. J.) = 1000 Beating.
×	[pol P] X (col I] - col X]) = 1,000 PS x Pep
k	Led C(1x(,Led J.T) = Lud L.1.) = Lunn = P68 x P69:
d.	[sol P] x([wil1] = [sol R.] > = 1,000 = Ps7
9	[[col (C] x ([col J] = [col 1,]) = 1,000 < 1967

Assumptions:	Value	Unit	CELL	Description
			REF	
-0	0.0	0	P43	0.00
0	0.0	- 0	btd	- 0
0	D	0	PAS	.0
0	0	0	P46	0
Single Door - Sides, Top, Swocp (UT)	C+	2 (UI)	Ltd.	Dailding 23.4 Exterior Doors
Overliesd Oost Westher Strip - Sides, Tops	*	(121)	148	Building =2.3.4 Overlead Dones
0	0	0	6td	0
.0.	0.0		150	.0.
.07	00	0	PSI	- 0
-io	0	0	1922	0
-0	0 0	10	153	- 0
0	00	.0	PSI	0
.0.	0.0	0	P55	.0
	0	, , , , , , , , , , , , , , , , , , ,	98d	.0
0	0	0	PS7	.0
.0	0		158	0
	0 0		6%d	0
.0.	0.	0	1960	0
0	0	9	194	0
0	0	. 0	P62	.0
.0	0.0		1963	.0
-0	0		1981	- 0
Total Criek Area	1.06 SE	SE	1866	Combination of all Types
Existing Boiler Plant Efficiency	85.1%		290	
Existing Cooling Plant Efficiency	2.93 COP	COP	89d	
Percent Building Ciroled	50.0%		694	
Average Winler Wind Speed	7.0	7.0 MPH	P70	
Average Summer Wind Speed	10.0	10.0 MPH	P71	
Cruck Area Windwurd Diversity	25.0%		172	

The state of the s	The same of the same of	ementalim i	ILEAN.		
	Cooling		Honnig		Description
panins	72.0	920	72.0	910	weare In mil amunatura aguave
Occupied	72,0	077	70,0	077	
Onexapion	0/7/	7/10	1000		

Page 18 of 20

THE S WEST	TAIN-3 Weather Data for Danbury, CT	banbury, CI						Operating Hours	438			Saviente								
Amb Temp Jimdeg F	Amb. Temp. Ave Temp.	M C W D	M.C. Enthina Burbus	OLOS Hours	anoji 91-60	(7-2) Hears	Total Bin	Osy On-Deak Has	Unition On- Peak Hrs.	Unition On Dec Off-Peak Peak lins film	Unoccour Peal Brs.	Total Crack Area (17)	Average Wind Speed (MRR)	Infiltration How Rate (CPM)	Oce Heating Cooling Savings (MBH)	Unitive Bening Cooling Sermen	Occ. Cooling Savings (MMBTU)	Unthe Cooling Savings (MMBTU)	Occ. Healing Savings (MMISTU)	Unches Heating Savings (MMBTII)
V	B	J	D	3	4	5	11	1	9	¥	7	M	Z	0	- d	0	×	s:	1	0
Cooling			1												2.7					
105 to 110	107.5	0'0	0.0	0	0	.0	0	0	0.	0.	0	1.3	0.01	171	7	2	0	.0		
100 to 105	102.5	0.0	0.0	0	- 0	0	0	- 00	0	0	0	13	0.01	171	. 0	9	.00	0		
95 to 100	97.5	9.0	0.0	0	0	0	0	0	0	. 0	0	13	10.0	171	3	5	0	0		
- 56 m 66	92.5	762	0.0	0	17	3	- 10	61	0	. 0	0	1.3	10.0	171	4	7	0	0		
85 to 90.	87.5	73.2	0.0	.00	900	13	193	93		0	0	1.3	10.0	171	*	3	5	- 10		
- 80 to 85	82.5	-69.5	0.0	8	167	. 50	225	225	0	- 0	. 0	1.3	10.0	121	2	7	.0	0		
75 818 80	27.3	63.3	0.0	345	216	801	350	350	0	0	- 0	171	10.0	171	- 1	- F	. 0	0		
704075	72.5	62.4	0.0	83	267	174	524	524	9	0	.0	13	10,0	171	0	0	0	0		
65 to 70	- 67.3	- 39.5	0.0	. 221	316	261	798	798	0	- 0	0	1.3	10.0	171	0	· · · · · ·	0	0		
60 m 09	62.3	34.0	13.43	279	280	344	012	.012	- 0	- 0	0	-51	10:00	171	-00	- 13	0	0		
Heating																				
35 to 60	57.5	48.4	0.0	287	218	295	830	830	0	0	-0-	1.3	7.0	119	Ċ	-			r	-0-
50 (0.55	52.5	44.8	0.0	280	288	311	879	879	0	0	- 0	1.3.	7.0	- 119	3	- 2			- 3	. 0
45 to 50	47.5	.41.5	900	201	891	242	701	701	- 00	. 0	0	1.3	7.0	119	. *	3			3	0
- 40 (0.45	12.5	38.0	0.0	255	212	237	208	704	0	. 0	0	-171	- 52	119	197	7			3	0
35 to 40	37.5	33.3	0'0	330	192	244	3992	766	0	. 0	0	13	- 270	119	5	4			4	0
30 to 35	32.5	29,6	0.0	236	163	248	547	. 647	.0	0	0	1.3	7.0	119	4	20			4	0
2541.30	27.5	31.1	0.0	200	56	132	433	433	0	- 0	0	13	2.0	110	.0					00
20 to 25	22.5	21.0	0.0	051	89	- 20	386-	306	0	0	0	13	7.0	119	12	9			2	0
15 to 20	17.5	691	0.0	29	15	73	161	161	0	. 0	0	1.3	0.2	1993	4	4			r	0
10 to 15	12.5	10.5	0.0	45	2.5	-8#	150	150	- 0	. 0	0	1.3	7.0	119	8	7		To the second	- 1	.0
5 to 10	7.5	4.0	0.0	- 53	- 20	32	. 110	- 110	0	- 0	. 0	1.3	7.0	119	6	8				
0.003	2.5	6.1	0.0	38	9	31	589	-88	. 0	. 0	- 0	1.1	2.0	119	6	6		4		:0:
-5100	(2.5)	0.0	0.0	24	0	10	25	25	0	0	- 0	131	7.0	119	10	- 6		1	0	.0
2- of 01+	(2.5)	0.0	0.0	.3	0	0	3	3	- 0	. 0	.0	1.1	2.00	119	- 13	- 10			. 0	.0
-13-10-10	(12.5)	0.0	10.03	0	.0.	0.	0.	0	-0	- 0	0	ET)	2.0	-617	-11	-13			0	0
-2010+15	(17.5)	00	0.0	0	0.	0	. 0.	0	0	. 0.	.0	-1.3	1.0	119	12	LI.			- 0	0
-25 to -20	(22.5)	0.0	0.0	0	.0	0	. 0	0	0	0.	-0-	1.3	7.0	119	13	10			0	.0
				3,030	0.000	Solvi	0.760	074.0	100	0	20							0		0

Cell Ref.	Comment
N-1	TMV-3 Weather Data for Darbury, CT
-	Occupied frants as per the RFP data
M	Total Cruck area of windows and doors
z	Average wind speed during the cooling and beating seasons
0	= col M x col N x 5286 = 60 x P70
ń,	- 1.08 x [col O] x C [col B] - 076) = 1000 cooling, 1.08 x [col O] x (Q76 - [col B]) = 1000 hearing
o	- 1.08 s.J. col. O.J.s. (1 col. B.J 077.) + 1.000 confing. 1.38 s.J. col. O.J.s. Q77 - J. col. B.J.) + 31/00 hearing
K	[col P.] x [col I.] - [col K.] j = 1,000 = 168 x P69
ķ	[col.Q] x ([col.1] = [col.L. 1.) = 1,000 = 1958 x 1959
-	[col P] x C[vul T] = [vul R T) = 1,000 + Ps7
- 53	[cot O 1 x (1 col J 1 = 1 col J 1 = 1 col J 1 = 1 Col C = 1967

Assumptions:	Value	Linit	CELL	Description	
			RIF		
Double Disor - Sides, Top, Sweep (UT)	3,000	. (1	P43	Esterior Dans	
Single Door - Sides, Top, Sweep (UT):	2000	- 6	P44	Extenor Door	
		Ī			Τ
block, Scal (LF)	80 (LF)		144	Building Perimeter	Π
-()-	0.0		PAK	0.	
0	00		64d	0	
0	00		150	-0	
0	0.0		184	0	ľ
0.	0 0		PS2	0	
0	00		PS	0.	
0	00		PS4	0	
0	00		1955	.0.	
0	00		98d	0	
0	00		1954	0	
0	00		1958	-0	
0	0.0		684	- 00	
0	0.0		P60	0	Ī
0	00		194	0	
0	0.0		P62	- 0	
0	00		P63	0	
-0-	0.0		P64	-0	
	15		200		T
Louis Crack Inca	10 071	1	100	Commingen of all 17 pes	T
Existing Bouch fund Hillerency	97.07.0		10.1		
Existing Cooling Plant Efficiency	233 COP	- d	P68		
Percont Building Cooled	450.0H>		69d		
Average Winter Wind Speed	7.0 MEH	H.	D20		
Average Sammer Wind Speed	HAIN O'OL	11,	171		
Crack Area Wardward Diversity	15,0%		172		

	Cooling		Healing		Description.
nained	72.0	920	05.0	920	ment in an american of men
Oscupied	72,0	- 077	0006	0.17	

Page 19 of 20

TMY-3 Weather Data for Danbury, CT	er Data fur f.	banbury, CI						Operating Hours	HES.			Savings								
Amb. Temp Jim deg. F	Ave Temp	M.C.W.II dog. F	M.C. Enthins Buchus	M.C. Enbelpy Sturbons Ol-08 Hours	andl 93-60	(7-25) Usurs	Yould Bin Hours	Osy On-Deak Hes	Unition the Peak life.	Occ OB-Peak Ibs.	Ukos 00: Ped His	Total Crack Area (R ⁷)	Average Wind Speed (MPR)	Infiltration Flow Rate (CFM)	Oce Heating Cooling Savngs (MBH)	United Heating Cooling Savoge (MBH)	Occ. Cooling Savings (MMBTU)	Unthes Cooling Savings (MMBTU)	Occ. Heating Sevence (MMISTU)	UniOse Heating Saving
V	8	Ü	D	3	A	Ç	111	-	9	×	-	W	Z	0	d	0	Ж	of:	1	0
poling			T																	
105 to 110	107.5	0,0	0.0	0	0	0.	0	0	.0	0	0	8:0	0.01	136	er.	15	0	.0		
100 to 105	102.5	0.0	0.0	0	- 0	0	0	00	0	0	0	8.0	10.0	136	7		- 00	0		
95 to 100	97.5	9.0	0.0	0	0	0	0	0	0	0	0	8'0	10.0	136	7	7	0	0		
56 m 66	92.5	76.2	0.0	0	17	. 3	- 10	- 61	0	0	0	8.0	10.0	136	3	3	0	0		
X5 to 90.	87.5	73.2	0.0	000	1000	13	93	. 93		0	0	9.0	10.0	136	63	.2	n	- 30		
80 to 85	82.5	-69.5	0.0	*	167	- 50	225	225	0	- 0	.0	8.0	.0.01	136	2		0	0		
75 811 80	77.5	63.3	0.0	345	216	801	350	359	0	0	-0	0.8	10.0	136	1		.0	0		
70 to 75	72.5	62.4	0.0	83	267	174	524	524	0	0	.0.	8'0	10,0	136	0	. 0	0	. 0		
65 to 70	67.5	- 39.5	0.0	. 221	316	261	798	798	0	- 0	. 0	9.0	10.0	136	0		0	0		
60 an 05	62.3	54.0	13.43	279	280	344	012	912.	- 0	0	0	8.0	10.00	136	-00	- 1)	0	- 0		
Teating	1																			
35 to 60	57.5	18.4	0.0	287	218	295	830	-830	0	0	0	870	0.4	56	1	1			-1	-0
50 to 55	52.5	44.8	0.0	280	288	30	879	879	0	0	0	8'0	7.0	56	3	2			- 2	. 0
45 to 50	47.5	41.5	0.0	291	168	242	701	701	0.	0	0	970	7.0	- 68	2					0
40 6145	42.5	38.0	0.0	255	212	237	208	704	- 0	0.	0	8.0	- 20	93	*	3			1	.0
35 to 40	37.5	33.3	0.0	330	192	244	766	766	0	. 0	0	0.8	0.4	56	3	6			3	0
30 to 35	32.5	29,6	0.0	236	163	248	547	. 647	. 0	0	0	8.0	7.0	- 56	4	4			3.	0
25 41 30	27.3	23.1	0.0	200	9.6	132	433	433	0	0	0	.8'0	2.0	56	1.7	4				
20 to 25	22.5	21.0	0.0	150	89	- 20	306	306	0	0	0	8'0	1.0	56	. 5	- 5			2	0
15 to 20	17.5	16.9	970	29	15	73	191	161	0	. 0	0	0.8	0.2	- 65	. 5				- 7	0
10 to 15	12.5	10.5	0.0	45	57	-8#	150	180	. 0	0	0	8.0	7.0	96	9	ų.				
5 to 10	7.5	4.0	6.0		- 50	37		110	0	. 0	. 0	8.0	7.0	- 95	9	- 9				.0
0.003	2.5	6.1	0.0	- 28	. 9	31	\$2	85	. 0	. 0	- 0	0.8	. 20	56	1					0
-5100	(2.5)	0.0	0.0	2.4	0	1 (1)	25	2.5	0	0		0.8	7.0	- 65	1.7.	7			0	.0
-10 to -5	(2.2)	0.0	0.0	3	0	0	3	3	.0	. 0	0	0.8	2.0	96	*	8			0	0
-1549-10	(12.5)	0.0	0.0	0.	.0.	0.	- 0:-	0	0	. 0	0	870	2.0	50	80	N.			- 10	0
-2010+15	(17.5)	0'0	0.0	0	0.	0	. 0.	0	0	. 0	0	970	1.0	- 56	- 6	6.			.0.	-0
-25 to -20	(22.5)	0.0	0.0	0	0.	0	. 0	0	0	0.	0	0.8	7.0	56	6	6			0	.0
				2,920	2,920	2,930	8.760	8,760	0	0	0						Ú	0	Ŕ	0

Cell Ref.	Comment
N-11	TMV-3 Weather Data for Darbury, CT
4	Occupied frame as per the RFP data
W	Total Cruck area of Windows and doors
z	Average wind speed during the excling and beating seasons
	Lot M 1x [col N 1x 5286 = 60 x P70
2	- 1.08 x [col O] x (] col B [- O76) = 1000 cooling. 1.08 x [col O [x (Q76 - [col B]) = 1000 hearing
	- L/W s. [53] O [v. ([50] B [- O77) = 1000 noving. L08 x. [50] O [v. Q77 - [53] B [) = 3100 hearing
	[col P] x (col I] - col K]) = 1,000 = P68 s P69
	[colQ]x([col4]=[col4]=[col4]+[;000+PS8x199
	[col P.] & C[vol I] = [vol R]) = 1,000 = PG?
L	Tool O 1 x (1 col J 1 = 1 col J, 11 = 1,000 = 767

Assumptions:	Value Unit	CELL	Description
		REF	
Single Door - Sweep (ITI)	4 (ATT)	P43	Exterior Divinos
Hopper Weatherszalins (UT)	11(015)	P45	Hopper Windows
0	00	P47	0
0	0.0	P4K	0
0	000	65d	0
0	000	050	-0
0	0.0	181	- 0
0.	00	PS2	0
0	000	120	0.
0	00	PS4	0
0	000	1955	.0.
0	00	98d	0
0	00	154	0
0	00	P58	.0
0	0.0	65d	- 00
0	000	D9d	0
0	00	194	0
0	00	P62	-0
. 0	00	P63	0
-0-	0.0	P64	-0
The state of the s	200	350	
Existing Roler Plant It Riceans	22.192	bk7	and it is not the second of the second
Existing Cooling Plant Efficiency	293COP	P68	
Percont Building Cioled	30.0%	69d	
Average Winter Wind Speed	7.0 MPH	P70	
Average Sammer Wind Speed	19.0 MPII	124	
Crack Area Wardward Diversity	.20.0%	172	

		-				Т
Average Space Temperatures - After	implementation.	IN EVE				
	Cooling		Heating		Description.	
(kenjired	72.0	920	2030	920	average lengerature for all areas.	
UnOccupied	72,0	- 017	0.07	140		

Page 20 of 20

Energy Savings Calculations for

ECM 15: Pipe Insulation

Investment Grade Audit

This page is intentionally left blank.

Putmam County, NV												
Energy and Demand Savings Summary	ary											
Measure ID:		15										
Measure Name:	Pipe Insulation	-										
Measure Location:												
Engineers:												
Site Name:		Court	Bruen	Court1812	Golf	EOC	KoehlerSr	PutnamSr	Hwyl	Vets	Law	Summary
Item	Units	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	
Electricity										1	THE RESERVE	
Energy On-Peak	kWh						1.	1 Table 1				0
Energy Off-Peak	kWh			7						A	A. A. C. C.	. 0
Energy Total	kWh	0	0	0	0	0	0	0	0	0	-0	.0
Demand On-Peak, Monthly	kW											0.0
Demand On-Peak, Annual	kW.											0.0
Demand Off-Peak, Monthly	kW.											0'0
Demand Off-Peak, Annual	kW											0'0
Fossil Fuel												0
Natural Gas (NG)	CCF	128					104			355	340	726
Liquid Propane Gas (LPG)	Gallons											0
Steam	MIbs											.0
Fuel Oil, #2	Gallons		583	182	272	231		308	06			1,966
Fuel Oil, #4	Gallons											-0.
Fuel Oil, #6	Gallons											0
Solar Value Stack	S											.0
Water								3				0
Water Savings	kGallons					†	1					0
Sewer												.0
Sewer Savings	kGallons											

AMERESCO &

					Existin	Existing Piping Detail	tuib				Existing	Existing Insulation Detail	Detail	Propose	Proposed Insulation Detail	Detail			
Cocation	Pipe Size (inches)			Fluid Inside conpectatu Communicate (%) Length (ft) (incl	Pipe eter	Outside Pipe Diameter (inches)	Piping)	Pipe Cond Fund Conductivit Cold Fluid y (Bulbr-ft Temperatu (Btubr-ft2- 0F) re-Air (PF) (PF)	Cold Fluid Temperatu (Conductivity - Air / Btu/br-ft2- °F)	Insulation Thickness (inches)	Insulation y	Insulation Conductivit Insulation Insulation y (Buthr-ft Thickness Emissivity °F) (inches)	Insulation Thickness (inches)	Insulation Emissivity	Insulation Conductivit Insulation y (Btu/hr-ft Emissivity %)	Existing Heat Loss (MBtu)	Proposed Heat Loss (MBtu)	Savings (MBtu)
[4]	181	[C]	101	101	III	Ξ	[7]	181	171	IMI	IN1	101	l b l	101	IRI	[8]	141	[1]	1.7.1
MITHW In-Line Pump	2	Water	185.0	20.0	4.03	4.30	0.65	227.0	70.0	1.00	0.0	0.93	0.0225	2.0	0.03	0.0225	25.826	4 586	-0.
MTHW Strainer	73	Water	185.0	10.0	4.03	4.50	0.65	227.0	0.07	1.00	0.0	0.03	0.0225	2.0	0.93	0.0225	12,913	2,293	0
MTHW 90 Degree Elbow	4	Water	185.0	1.8	4,03	4.30	0.65	227.0	.0.02	1.00	0.0	.0:93	0.0225	2.0	0.93	0.0225	2,324	+113	1,912
MTHW Bonnet	7	Water	185.0	1.8	4.03	4.50	0.65	227.0	70.0	1,00	0.0	0.93	0.0225	2.0	660	0.0225	2,324	413	0
MTHW End Cap	+	Water	185.0	1.5	4.03	4.50	690	227.0	70.07	1.00	0.0	66.0	0.0225	2.0	0.03	0.0225	1,937	344	1,593
MTHW Straight Pipe	4	Water	185.0	3.0	4.03	4,50	6.65	227.0	0'02	1.00	0'0	0.93	0.0225	2:0	0.93	0.0225	3,874	889	3,186
MTHW Bonnet	10	Water	185.0	×	4.03	4.50	0.65	227.0	70.0	1.00	0.0	0.93	0.0225	2.0	6.93	0.0225	2,324	413	0
MTHW Centrifugal Pump	5	Water	185.0	10.0	4.05	4.50	0.65	227.0	70.0	1.00	0.0	0.93	0.0225	2.0	0.93	0.0225	12,913	2,293	0
MTHW Flex Fitting	ý	Water	185.0	0.0	4.03	4.50	59.0	227.0	70,07	1.00	0/0	0.93	0.0225	2.0	0.93	0.0225	7,748	1,376	-6,372
MTHW Strainer	5	Water	185.0	5.0	2.07	2.38	0.63	227.0	.0.07	1.00	0.0	0.93	0.0225	2.0	0.93	0.0225	3,408	747	0
MTHW Suction Diffuser	W)	Water	185.0	8.8	2.07	2,38	69.0	227.0	.0.07	1.00	0.0	6.03	0.0225	2.0	6.93	0.0225	5,998	1,314	.0
Totals				12.3													81,590	14,879	13,063

all Ref.		Comment
	Ą	Location of Pipe
	B-K	Piping properties
	L-M	Cold fluid properties, typically air
	N-P	Existing insulation details
	8-0	Proposed insulation details
	T.	(Existing Transmission = Radiation Heat Loss) x [col E] = [P65] = 1
	0	= (Proposed Transmission + Radiation Heat Loss) x col E + P65 +
	Λ	= col T - col U

Totaly System Efficiency 70.0% [P65 From Baseline 60% From Baseline	tem	Value	Units	Cell Ref	Remarks	
60% [P65]	Jealing System Efficiency	70,0%		[P65]	From Baseline	
	Saving Adjustment Factor	%09		1 594 1		

Putnam County, NY David D. Bruen County Office Building Pipe Insulation

						ESIS	Existing Piping Details	etans					Existin	Existing Insulation Details	Detallo	rmhus	Proposed Insulation Details	Dermo		I	
Actalian	Pipe Size (inches)	Fluid Type (Water or Steam)	Plaid Temperatu re (°F)	Beating	Fluid Velocity (ft/s)	Length (FO	Inside Pipe Diameter (inches)	Outside Pipe Diameter (inches)	Piping Emissivity	Pipe Conductivit y (Btu/hr-ft-	Cold Fluid Conductivit Temperato y - Air re - Air (Biu/hr-ft2- (%F) %F)	Conductivit y-Air (Bin/hr-ft2- °F)	Insulation Thickness (inches)	Insulation Emissivity	Insulation Conductivit y (Btu/hr-ft-	Insulation Thickness (inches)	Insulation Emissivity	Insulation Conductivit y (Btu/hr-ft	Existing Heat Loss (MBtu)	Proposed Heat Loss (MBtu)	Savings (MBtu)
[A]	181	101	101	131	141	[5]	111	111	131	IKI	(L)	[M]	IN	[0]	1.9.1	101	IRI	[8]	-[1]	101	[V]
DS 90 Denney Fllows	3/4	Stoum	20511	3.817	2.0	87	0.83	1.08	0.65	227.0	20.0	1.00	0.0	0.03	0.0075	3.5	0.07	0.0005	316	80	0
LPS Straight Pipe	3/4	Steam	205.0	3,817	5.0	2.0	0.82	1.05	0.65	227.0	20.0	1.00	0.0	0.03	0.0225	2.5	0.93	0.0225	351	86	0
PS Strainer	3/4	Steam	205.0	3,817	. 5.0	5.0	0.82	1.05	59'0	227.0	70.0	1.00	0.0	0.03	0.0225	2.5	0.93	0.0225	879	246	633
PS 90 Degree Elbow		Steam	205,0	3,817	5.0	3.6	1.05	1.32	0.65	227.0	70.0	100	0.0	0.03	0.0225	2.5	0.63	0.0225	792	197	595
90 Degree Elbow Steelalt Bine		Steam	205.0	3,817	0.0	2.4	1.05	1.22	0.65	227.0	20.0	1.00	0.0	0.03	0.0225	2.5	0.03	0.0223	1,188	290	893
PS Straight Pine		Steam	205.0	3.817	\$.0	6.0	1.05	133	0.65	227.0	70.0	1.00	0.0	0.03	0.0225	25	0.93	0.0225	1,320	320	0
PS 45 Deeper Films	1 1/4	Steam	205.0	7.817	5.0	1.0	1.38	166	990	227.0	70.0	1.00	0.0	26.0	0.0225	36	0.03	0.0225	278	69	216
PS 90 Degree Elbow	1 1/4	Steam	205.0	3.817	5.0	0.0	1.38	997	0.65	227.0	70.0	1.00	0.0	0.93	0.0225	2.5	0.93	0.0225	2,500	585	1.945
PS Straight Pipe	1 1/4	Steam	205.0	3,817	5.0	0.9	1.38	1.66	0.65	227.0	70.0	1.00	0.0	0.93	0.0225	2.5	0.93	0.0225	1,667	370	0
LPS 90 Degree Elbow	1 1/2	Steam	205.0	3,817	5.0	5.4	191	1.001	0.65	227.0	20.0	1.00	0.0	10.03	0.0225	2.5	0.93	0.0225	1,717	358	1,350
LPS 90 Degree Ethon	1 1/2	Steam	205.0	3,817	5:0	10.8	197	1.90	0.65	227.0	70.0	1.00	0.0	0.93	0.0225	2.5	0.93	0.0225	3,434	716	2,718
LPS Straight Pipe	1 1/2	Steam	205.0	3,817	5.0	9,0	191	1.901	6.65	227.0	70.0	1.00	0.0	0.93	0.0225	2.5	0.93	0.0225	2.862	597	2,265
.PS Straight Pipe	1 1/2	Steam	205.0	3,817	5.0	11.0	191	1.90	0.65	227.0	70.0	1.00	0.0	0.93	0.0225	2.5	0.93	0.0225	3,498.	729	2,768
PS T Intersection	7.1.17	Steam	205.0	3.817	5.0	3.6	191	1.90	0.63	227.0	70.07	1.00	0.0	0.03	0.0225	2.5	0.93	0.0225	1.145	239	906
PS 45 Degree Elbaw		Steam	205.0	3,817	5.0	2.0	2.07	2.38	0.65	227.0	70.0	1.10	0.0	0.93	0.0225	2.5	0.93	0.0225	795	150	1119
PS 90 Degree Elbow	2	Steam	205.0	3,817	5.0	5.4	2.07	238	0.65	227.0	70.0	007	0.0	0.93	0.0225	2.5	0.93	0.0225	2,146	400	1,740
PS Stragge Pipe	4	Steam	0.002	3,817	3.0	16.0	2.07	2.48	0.03	227.0	70.0	007	0.0	0.05	0.0225	5.5	0.93	0.0223	0,339	1,204	3,133
JPS 43 Degree allow	2/1/2	Steam	0.007	1817	200	5.1	2.47	2.80	59.0	322.0	200	1.00	0.0	0.03	50000	50	0.01	50000	2 408	156	2113
PS Flance	2 1/2	Steam	205.0	3.817	5.0	3.8	1.47	2.88	0.65	227.0	70.0	000	0.0	0.03	0.0225	25	0.93	0.0225	860	152	714
PS Straight Pipe	2 1/2	Steam	205.0	3,817	5.0	16.0	2.47	2.88	0.65	227.0	70.0	1.00	0.0	0.03	0.0225	2.5	0.93	0.0225	7,698	1,350	6.348
PS T Intersection	2 1/2	Steim	205.0	3,817	5.0	2.4	2.47	2.88	6.65	227,0	70.0	1.00	0.0	0.93	0.0225	2.5	0.05	0,0225	1,155	203	952
LPS 90 Degree Elbow	10.	Steam	205.0	3,817	5.0	5.4	1.07	3.50	6.65	227.0	70.0	0.00	0.0	0.93	0.0225	2.5	16.0	0.0225	3,163	516	2,647
.PS Flunge	ž,	Steam	205.0	3,817	5.0	1.8	3.07	3.50	0,65	227.0	70,0	1.00	0.0	0.93	0.0225	2.5	0.93	0.0225	1.054	172	882
DS T Immediate	2	Steam	205.0	3,817	3.0	15.0	3.07	3,30	0.63	227.0	70.0	007	0.0	0.93	0,0225	5.5	0.93	0.0225	8.786	330	7,352
PS W Degree Flhow	-	Steam	205.0	1.817	5.0	18	3.03	1.50	590	227.0	70.07	1.00	0.0	0.03	0.0225	3.0	0.93	0.0225	1355	182	1.174
PS Bonnel	+	Steam	205.0	3,817	5.0	3.6	1.03	4.50	6.65	227.0	70.0	1.00	0.0	0.93	0.0225	3.0	0.93	0.0225	2.711	363	2,348
PS Bounet		Steam	205.0	3.817	5.0	1.8	6.03	4.50	0.65	227.0	70.0	1.00	0.0	0.03	0.0225	3.0	0.93	0.0225	1,355	182	1,174
PS Straight Pipe	+	Steam	205.0	3,817	5.0	7.0	4.03	1,50	0.65	227.0	70.0	1.00	0.0	0.93	0.0225	3.0	0.93	0,0225	5.271	707	4,365
PS Straight Pipe		Steam	205.0	3,817	2.0	0.6	4.03	150	590	227.0	70.0	007	0.0	0.93	0.0225	3.0	0.93	0.0225	6,777	806	5,869
PS Tintersection	, ,	Steam	205.0	3.817	5.0	2.4	4.03	4.30	0.65	227.0	70.07	1.00	0.0	0.03	0.0225	3.0	0.93	0.0225	1.807	242	1.565
PS 90 Degree Elbow		Steam	205.0	3,817	.5.0	87	4.03	4.50	0.65	227.0	70.0	1.00	0.0	0.93	0.0225	3.0	0.93	0.0225	1,355	182	1.174
.PS Bonnet	\$	Steam	205.0	3,817	5.0	3.6	4.03	4.50	0.65	227.0	70.0	1.00	0.0	0.93	0.0225	3.0	0.93	0.0225	2,711	363	2,348
PS Boanet	3	Steam	205.0	3,817	5.0	1.8	4.03	4.50	0.65	227.0	70.0	1.00	0.0	0.93	0.0225	3.0	0.93	0.0225	1,355	182	1,174
.PS Straight Pipe	8.	Steam	205.0	3,817	5.0	7.0	4.03	4.50	0.65	227.0	70.0	1.00	0.0	0.03	0.0225	3.0	0.93	0.0225	5,271	707	4.565
PS Straight Pipe	40.4	Steam	205,0	3,817	5.0	9.0	4.03	4.50	0.65	227.0	70.0	1.00	0.0	0.03	0.0225	3,0	0.93	0.0225	1,007	806	5,869
Cond 45 Degree Elbow	3/4	Witter	165.0	3,817	5.0	5.0	0.82	1.05	0.65	227.0	70.0	1.00.1	0.0	0.93	0.0225	1.5	0.93	0.0225	587	215	0
Cond 45 Degree Elbow	3/4	Water	165.0	3,817	5.0	8.0	0.82	1.05	0.65	227.0	70.0	1.00	0.0	0.93	0.0225	1.5	0.93	0.0225	939	345	0
Cond 90 Degree Elbow	3/4	Water	165.0	3.817	5.0	7.2	0.82	1.05	0.65	227.0	70.0	007	0.0	0.93	0.0225	3.5	0.93	0.0225	845	310	535
Cond 90 Degree Elbow	3/4	Water	165,0	3,817	5.0	23.4	0.82	1.05	0.65	227.0	70.0	1.00	0.0	0.03	0.0225	1.5	0.93	0.0225	2,746	1,008	1,738
Cond Straight Pipe	3/4	Water	165.0	3.817	20	4.0	0.82	1.05	0.65	227.0	70.07	1.00	0.0	0.93	0.0225	1.5	0.93	0.0225	469	172	0 0
Cond Straight Pipo	3/4	Witter	165,0	3,817	5.0	36.0	0.82	1.05	9.65	227.0	70.0	1.00	0.0	0.93	0.0225	3.5	0.93	0,0225	4,224	1.551	0
Cond 90 Degree Elbow	_	Waler	165.0	3,817	5.0	1.8	1.05	132	5970	227.0	70.0	1.00	0.0	0.93	0.0225	1.5	0.93	0.0225	264	88	117
Cond Straight Pipe		Water	165.0	3,817	5.0	7.0	1.05	1.32	0.65	227.0	70.0	1,00	0.0	0.93	0.0225	51	0.93	0.0225	1.029	72.	0
Cond 1 Intersection	2	Water	0,001	1817	5.0	2.0	200	238	0.65	227.0	20.0	1.00	0.0	0.03	0.0225	2.0	0.93	0.0225	531	110	4/4
Cond 90 Degree Elboys	2	Water	165.0	3,817	5.0	10.8	2.07	2.38	0.65	227.0	70.0	1.00	0.0	0.93	0.0225	2.0	0.93	0.0225	2.866	643	2,223
Cond 90 Degree Elbow	64	Water	165.0	3,817	5.0	0.6.	2.07	2.38	0.65	227.0	20.0	1.00	0.0	0.03	0.0225	2.0	0.93	0.0225	2,388	336	1,853
Cond Straight Pipe	7	Water	165.0	3,817	5.0	10.0	2.07	2.38	. 0.65	227.0	70.0	1.00	0.0	0.03	0.0225	2.0	0.93	0.0225	2,654	595	2,050
COND STRIKE PIPE	7	Willer	165.0	3,817	2.0	49.0	2.07	2.38	0.02	227,0	70.0	1.00	0.0	0.93	0.0225	2.0	0.95	0.0225	15,003	2.916	10,087
Cond 90 Degree Elbow	2 1/2	Water	165.0	3.817	5.0	7.2	2.47	2.88	0.65	227.0	70.0	1.00	0.0	0.93	0.0225	2.0	0.93	0.0225	2,313	484	1.829
Cond Flange	2 1/2	Water	165.0	3,817	5.0	1.8	2.47	2.88	0.65	227.0	70.0	1.00	0.0	6.03	0.0225	2.0	0.93	0.0225	578	121	457
Cond Straight Pipe		Water	165.0	3,817	5.0	23.0	2.47	2.88	0.65	227.0	70.0	007	0.0	0.93	0.0225	2.0	0.93	0.0225	7,388	1.545	5,843
Cond Gate Valve	-	Water	165,0	3,817	5.0	7	3.07	3.50	0.65	227.0	70.0	1.00	0.0	0.93	0.0225	2,0	0.93	0,0225	1,603	314	1,289
Cond Straight Pipe	-0	Water	165.0	3,817	5.0	2.0	3.07	3.50	0.65	227.0	70.0	007	0.0	0.93	0.0225	2.0	0.93	0.0225	782	153	629
Cond Control Taid		Water	165.0	3.817	\$ 0	8.0	8.07	29 8	990	227.0	20.07	100	0.0	0.03	0.0225	0.0	0.03	56600	77117	1,718	9619
COMMUNICATION Annual			10000				-1.00			-	136.00	- Anna	400	1	200000000000000000000000000000000000000			The state of the s	2.424.	100000	2011
Totals						455.1													162,107	31,208	122,518

Units Cell Ref Remarks	[P78] From Base	[P65]
Value	500 62 Votes	ctor 50%
Hem	Heating System Effice	Saving Adjustment Fa

			v air
Comment	Location of Pipe	Piping properties.	Cold fluid properties, typically
	٧	B-K	L-M
Cell Ref.			

Page Tof 12

Putnam County, NY David D. Bruen County Office Buildin Pipe Insulation

						Existin	ng Piping Det	tails					Existing	Existing Insulation Details	Details	Propose	Proposed Insulation I	Details			
Cocasion	Pipe Size (inches)	Find Type Find Paring (Water or Temperatu Beating (inches) Steam) re (FF) Hours	Floid Temperatu re (PF)	Beating	Fluid Velocity (fits)	finside Pip Diameter Length (ff) (inches)		Outside Pipe Diameter (inches)	Piping missivity	Pipe Conductivity (Btu/hr-ft-	Pipe Cold Fluid Conductivit Conductivit Temperatu y-Air (Bulfur-fr- re-Air (Bulfur-ft2- 9F) - P.	Cold Fluid Conductivit Temperato y - Air re - Air (Bin/hr-ft2-	Insulation Thickness (inches)	Insulation y	Insulation Conductivit Insulation y (Bar/hr-ft: Thickness 'FF) (inches)	Insulation Thickness (inches)	Pipe Cold Find Conductivit Conductivit Conductivit Insulation Conductivit Experiment Conductivit Temperate y-Air Insulation Conductivit Insulation (Fundred)	Insolution Conductivit v (Btu/hr-ft	Existing Heat Loss (MBtu)	Proposed Hear Loss (MBtu)	Savings (MBtu)
IV)	181	101	101	131	[4]	[5]	181	111	131	IKI	(1)	IM!	INI	[0]	l b l	101	IRI	181	111	101	IVI
d-N	Existing in	Existing insulation details	10																		
8-0	Proposed in	Proposed insulation details	S																		
4	= (Existing	Existing Transmission - Radiation Heat Loss (x col E + P78	- Radiation H	eat Loss 1 x A	SOLE J + J P.	S J = 1.000.															
n n	asodor4) =	Proposed Transmission + Radiation Heat Loss) x col E - [P78	n + Radiation I	Test Loss) x	COLE !-! P.																
.5.	- Control Control	T. Percel Fit I																			

AMERESCO @

10/31/2019

					Existin	Existing Piping Details	- qu				Existing	Existing Insulation Details	betail.	Propose	Proposed Insulation Details	Details			
Location	Pipe Size (inches)	Pipe Size (Water or Temperato (niches) Steam) re (°P)	Fluid Temperato re (PF)	Length (ft)	Inside Pipe Diameter (inches)	Outside Pipe Diameter (inches)	Piping y Emissivity	Pipe Conductivity Y (Bio/he-ft	Cold Fluid Conductivit Temperatu y - Air re - Air (Btu/hr-ft2- (°F) °E)	Conductivit y - Air (Btu/br-ft2-	Insulation Thickness (inches)	Insulation y Emissivity	Insulation Conductivit Insulation Conductivit Insulation (Conductivit Insulation (Conductivit Insulation (Conductivity OF) (Conductivity OF)		Insulation	Insulation Conductivit Insulation y (Btu/hr-ft- Emissivity	Existing Reat Loss (MBto)	Proposed Heat Loss (MBta)	Savings (MBtu)
[A]	[8]	101	[g]	[9]	181	111	131	181	[1]	[W]	(N)	101	I I	101	IRI	S	(T)	101	IVI
MTHW Flange	. 2	Water	185.0	9'08	2.07	2.38	0.65	227.0	70.0	1.00	0.0	0.93	0.0225	2,0	- 0.93	0.0225	7,725	1.692	0
MTHW In-Line Pump	6	Water	185.0	. 55.0	2.07	2.38	99.0	227.0	70.07	1:00	0.0	0.93	0:0225	2.0	0.93	0.0225	1150	1,383	4.929
MTHW Straight Pipe	2	Water	185.0	3'0	2.07	2.38	0.65	227.0	70.07	1,00	0.0	6.93	0.0225	7.0	66:0	0.0225	757	991	165
MTHW Strainer	2	Water	185.0	15.0	2.07	2.38	99.0	227.0	70,07	1.00	0.0	0.03	0.0225	2.0	66.0	0.0225	3,787	830	2,957
MTHW Suction Diffuser	2	Water	185.0	8.8	2.07	2.38	59.0	227.0	0.07	1.00	0.0	660	0.0225	2.0	660	0.0225	2,222	487	1,735
MTHW Air Seperator Tank	12 20/21	Water	185.0	13.0	1671	12.75	0.65	227.0	70.0	1.00	0.0	.0.93	0.0225	2.0	0.93	0.0225	17,547	2,528	15,018
Totals				156													38 3.10	7.085	25,231

Cell Ref.	Comment
A	Location of Pipe
B-K	Piping properties
E-M	Cold fluid properties, typically uir
N-P	Existing insulation details.
8-0.	Proposed insulation details
1	 (Existing Transmission + Radiation Heat Loss) x Lool E + Pt65 + 1,000
n n	= (Proposed Transmission + Radiation Heat Loss) x col E + P6f + 000
	A STATE OF THE PARTY OF THE PAR

Item	Value Un	its Cel	Ref Remarks	
Heating System Efficiency	75.0%	(b	65 From Base	line
Savine Adrestment Facto	3605	d.)	189	

Putnam County, NY Putnam National Golf Club - Clubhouse Pipe Insulation

					Existin	Existing Piping Detail	cails				Existing	Existing Insulation Details	Setails	Propose	Proposed Insulation Details	Details			
Largation	Pipe Size ('	Fluid Type (Water or Steam)	Fluid Type Fluid (Water or Temperata Steam) re (FF)	Length (ft)	Inside Pipe Diameter (inches)	Outside Pipe Diameter (inches)	Piping (Pipe (Conductivit 1 y (Btu/br-ft		Cold Fluid Conductivit femperatu y-Air Insulation re-Air (Bluid-ff2-Thickness (%) (inches)	Insulation Thickness (inches)	Insulation 5	Insulation Conductivit Insulation y (Btu/hc-ft Emissivity °F)	Insulation Thickness (inches)		Insulation Conductivit Insulation (PR) Conductivit Conductivit Conductivit (OP)	Existing Heat Loss (MB(u)	Proposed Heat Loss (MBta)	Savings (MBtu)
[A]	181	101	(a)	161	III	111	19	181	171	M	N.	101	141	101	IRI	[8]	[1]	101	[V]
MTHW In-Line Pump	1 1/2	Water	185.0	50.0	197	1.90	0.65	227.0	70.07	1.00	0.0	0.93	0.0225	2.0	0.93	0.0225	27,266	6,532	20,734
MTHW Bonnet	en.	Water	185.0	8.	3.07	3.50	0.65	227.0	70.07	1.00	0.0	0.93	0.0225	2.0	0.93	0.0225	1,808	346	1,462
MTHW Flange	en e	Water	185.0	8.1	3,07	3,50	0,65	227.0	70.07	1.00	0'0	0.93	0.0225	2.0	0.03	0.0225	808'1	346	1,462
MTHW In-Line Pump	17)	Water	185.0	5.0	3.07	3.50	\$9.0	227.0	70.07	1.00	0.0	0.93	0.0225	2.0	0.93	0.0225	5,022	196	4,061
MTHW Air Seperator Tank	6 7/25	Water	185.0	179	209	6.63	990	227.0	70.07	3.00	0.0	6.03	0.0225	2.0	6.03	0.0225	11/938	1.927	10,010
Totals				64.9													17,841	10,112	37,729
																		J	

Cell Ref.	Comment
Y	Location of Pipe
B-K	Piping properties
L-M	Cold fluid properties, typically are
d-N	Existing insulation details
8-0	Proposed insulation details
_ L	 Existing Transmission + Radiation Heat Loss) x col E = Pu5 [= 1,000
n	(Proposed Transmission + Radiation Heat Loss) x col E = Prés = 1,1000

tem	Value Units	Cell Ref	Remarks
Jealing System Efficiency	70.0%	18941	From Baseline
Saving Adjustment Factor	26093	1 59d i	

					Existi	Existing Piping Detail	tuib				Existing	Existing Insulation Detail	etail	Propose	Proposed Insulation Detail	Jetail			
Location	Pipe Size (inches)	4 -	luid Type Fluid Water or Temperatu Steam) re (°F)	Length (ft)	Inside Pipe Diameter (inches)	Outside Pipe Diameter (inches)	Piping)	Pipe Conductivit (y (Btu/br-ft 1	old Fluid emperatu	Conductivity - Air y - Air (Btu/br-ft2- °F)		Insulation (Insulation Conductivit Insulation Conductivit Insulation y (Buthr-ft Thickness Emissivity °F) (inches)		Insulation Conductivi (Btu/hr-f)	Insulation Conductivit y (Btu/hr-ft	Existing Heat Loss (MBtu)	Proposed Heat Loss (MBtu)	Savings (MB(u)
[A]	[8]	[2]	I D I	151	IHI		[7]	IK!	171	IMI	INI	101	l b l	101	IRI	[8]	LEI	[1]	LVI
MTHW In-Linc Pump	2	Water	185.0.	.0.01	2.07	2.38	5970	227.0	70.07	00.0	0.0	0.93	0.0225	2.0	0.93	0.0225	6,076	1,331	4,745
MTHW Centrifugal Pump	.4	Water	185.0	10:0	4.03	4.50	6.65	227.0	0.07	1,00	0.0	0.93	0.0225	2.0	0.93	0.0225	11511	2,044	794.6
MTHW Strainer	च	Water	185.0	16.0	4.03	4,50	0.65	227.0	70.0	1.00	0.0	0.93	0.0225	2.0	0.93	0.0225	11511	2,044	194'6
MTHW Suction Difftiser	+	Water	185.0	8.8	4,03	4.50	0.65	227.0	70.0	1.00	0.0	0.93	0.0225	2.0	0.93	0.0225	10,130	1,799	8,331
Totals				38.8											100		39,229	7,218	32,011

Cell Ref.	Comment
A	Location of Pipe
B-K	Piping properties
L-M	Cold fluid properties, typically air
N-P	Existing insulation details
0.8	Proposed insulation details
- I	= (Existing Transmission - Radiation Hear Loss) x [col E - P65 - 1,000
n	# (Proposed Transmission # Radiation Heat Loss) x [col E # P65.] # 1,000
	=(150 T -150 U

ten	Value Units	Cell Ref	Remarks
Heating System Efficiency	78.5%	18941	From Baseline
Savine Adjustment Factor	%099	1 5961	

Putnam County, NY William Kochler Senior Center Pipe Insulation

					Existin	Existing Piping Detail	tail:				Existing	Existing Insulation Detail	etail	Proposed	Proposed Insulation Detail	Jetail.			
	Pipe Size	Fluid Type Fluid	Fluid		Inside Pipe Diameter	Outside Pipe Diameter	Piping y	Pipe Conductivit Cold Fluid y (Btu/hr-f) Tenperatu	P 0 =		Insulation Thickness	Insulation Conductivit Iosulation y (Btu/hr-ft		Insulation	Insulation Conductivit Insulation y (Btu/hr-ft	Insulation Conductivit y (Btu/hr-ft	Existing Heat Loss	Proposed Heat Loss	Savings
Location	(inches)	Steam)	re (°F)	Length (fi)	(inches)	(inches)	Emissivity	oE) L	re- Air (°F)	(Jo	(inches) I	Emissivity	oF)	(inches)	Emissivity	(do	(MBtn)	(MBtn)	(MBtn)
[A]	[8]	157	[0]	[6]	IBI	Ξ	[1]	IK]	171	[M]	INI	[0]	[F]	101	IRI	181	171	101	1.7.1
MTHW Straight Pipe	- 1	Water	185.0	15.0	3.05	1.32	69'0	227.0	70.0	1.00	0.0	0.93	0.0225	1.5	0.93	0.0225	4,345	1,407	- 0
MTHW 90 Degree Elbow	1 1/2	Water	185.0	3.6	191	1.90	69.0	227.0	0.07	1:00	0.0	660	0.0225	2.0	0.03	0.0225	1,507	361	1,146
MTHW In-Line Pump	1 1/2	Water	185.0	5.0	1.61	1.90	690	227.0	904	1.00	0.0	0.93	0.0225	2.0	0.93	0.0225	2,092	105	1,591
MTHW Straight Pipe	1 1/2	Water	0.581	12.0	191	1,90	6.65	227.0	70.07	1.00	-0.0	- 0.93	0.0225	2.0	0.93	0.0225	5.022	1.203	-0
MTHW Strainer	1 1/2	Water	185.0	5.0	191	06.1	0.65	227.0	70.0	1.00	-0.0-	.0.93	0,0225	2,0	0.93	0.0225	2,092	105	1,591
MTHW 90 Degree Elbow	. 2	Water	185.0	5.4	2.07	2.38	0.65	227.0	70.0	1.00	0.0	0.93	0.0225	2,0	0.93	0.0225	2,825	619	2,206
MTHW In-Line Pump	2	Water	185.0	5.0	2.07	2.38	0.65	227.0	70.0	1.00	0.0	0.93	0.0225	2.0	6.93	0.0225	2,615	573	2,042
MTHW Straight Pipe	2	Water	185,0	12.0	2.07	2.38	. 59'0	227.0	0.07	1.00	0.0	0.93	0.0225	2.0	0.63	0.0225	6277	1,375	-0
MTHW Strainer	7	Water	185.0	5.0	2.07	2.38	0.65	227.0	70.0	1:00	0.0	0.93	0.0225	2.0	0.93	0.0225	2,613	573	2,042
				-						100									
Totals	L			0.89													29,390	7,113	10,619
													1						

Cell Ref.	Comment	
V	Location of Pipe	
B - K	Piping properties	
F-W	Cold fluid properties, typically air	
N-P	Existing insulation details	
8-0	Proposed insulation details	
T.	= (Existing Transmission + Radiation Heat Loss) x [col E.] = [765] = 1,000	.00
0	= (Proposed Transmission + Radiation Heat Loss) x cot E = P65 =	.000

	Value Units	Cell Ref	Remarks
sting System Efficiency	76.0%	P65	From Baseline
ing Adjustment Factor	50%	1 P65	

					Exists	Existing Piping Details	caile				Existing	Existing Insulation Detail	betail	Propose	Proposed Insulation Detail	Detail			
Location	Pipe Size (inches)	Fluid Type Fluid (Water or Temperato Steam) re (°F)		Length (ft)	Inside Pipe Diameter (inches)	Outside Pipe Diameter (inches)	Piping y Emissivity	Pipe Conductivit Cold Fluid y (Rtufte-ft Temperatu 9F) re- Air (°F)	Pipe Cond Fluid Conductivit Cold Fluid y (Blufach) Temperatu (Blufach) 2- Air y (B - re- Air (*F) %)		Insulation Thickness (inches)	Insulation Conductivit Iosulation y (Btu/he-ft Emissivity ^o F)	Insulation Conductivit y (Btu/hc-ft	Insulation Thickness (inches)	Insulation Conductivit Insulation y (Btu/hr-ft Emissivity	Insulation Conductivit y (Btu/hr-ft °F)	Existing Heat Loss (MBtu)	Proposed Heat Loss (MBtu)	Savings (MBtu)
[4]	181	101	[0]	[6]	IBI	Ξ	[3]	[K]	171	[M]	INI	[0]	I b I	101	IRI	IS!	17.1	101	1.1
MTHW 90 Degree Elbow	2 1/2	Water	185.0	3.6	2.47	2.88	69'0	227.0	70.0	1.00	0.0	0.93	0.0225	2.0	6.93	0.0225	2,772	366	2,206
MTHW Straight Pipe	2 1/2	Water	185.0	3.0	2.47	2.88	69.0	227.0	70.0	0.00	0.0	660	0.0225	2.0	0.93	0.0225	2,310	472	1.838
MTHW Flex Fitting	m	Water	185.0	3.0	3,07	3.50	69.0	227.0	70.0	1.00	0.0	0.93	0.0225	2.0	0.93	0.0225	2,812	538	2,274
MTHW Strainer	3	Water	185.0	0.01	3.07	3,50	6.65	227.0	70.07	1.00	-0.0	. 0.93	0.0225	2.0	0.93	0.0225	9.374	1,793	7,581
MTHW Suption Diffuser	m	Water	185.0	8.8	3.07	3.50	6.65	227.0	70.0	1.00	-0.0-	660	0,0225	2.0	.0.93	0.0225	8,249	1,578	129'9
MTHW Straight Pipe	7.	Water	185.0	0.6	4.03	4.50	0.65	227.0	70.0	1.00	0.0	0.93	0.0225	2.0	0.93	0.0225	10,847	1,926	8,921
MTHW Strainer	7	Water	185.0	10.0	4.03	4.50	0.65	227.0	70.0	1.00	0.0	0.03	0.0225	2.0	0.93	0.0225	12,052	2.140	9,912
WITHW T Intersection	77	Water	185.0	2.4	4,03	4.50	. 59 0	227.0	20.0	1.00	0.0	0.93	0.0225	-5.0	0.63	0.0225	2,893	514	2,379
DHW Straight Pipe	3/4	Water	125.0	0.9	0.82	1:05	69.0	227.0	70.0	1.00	0.0	0.93	0.0225	1.0	0.93	0.0225	1,125	517	809
DHW Straight Pipe	1-1-1	Water	125.0	2.0	1.05	1.32	0.65	227.0	70.07	1.00	0.0	0.93	0.0225	1.0	0.93	0.0225	420	161	272
					1														
Totals				87.8													52,905	10,242	42,662

Cell Ref.	Continent
Y	Location of Pipe
B - K	Piping properties
I M	Cold fluid properties, typically air
N.P	Existing insulation details
5.0	Proposed insulation details
1	= (Existing Transmission + Radiation Heat Loss) x co E = P65
0	= (Proposed Transmission + Radiation Heat Loss) x col E + P65 + 1,000
Λ	= [col 1] + [col []

lem -	Value Units	Cell Ref	Remarks
leating System Efficiency	75.0%	1 P65	From Baseline
siving Adjustment Factor	60%	1 P65 1	

Putnam County, NV Highway Department - Building 1 Admir Pipe Insulation

						Existing	Existing Piping Details	Is.					Existing In	Existing Insulation Details	ls.	Proposed h	Proposed Insulation Details	raits			
Location	Pipe Size (inches)	20	hid Type Fluid Water or Temperatu Steam) re (°F)	Heating Hours	Pluid Velocity (RUs)	ha D D	Diameter Di	Outside Pipe Diameter I (inches) En	Co Phing y (missivity	Pipe Col Conductivit Ten y (Btu/hr-ft-re	Cold Fluid Conductivit Femperatu y - Air re - Air (Btu/hr-ft2- (°F) °F)		Insulation Thickness In (inches) En	Institution y (Bi	Josulation Conductivit fus y (Btu/hr-ff Thi	Insulation Thickness Ins (inches) Ew	Insulation Conductivit Insulation y (Btu/hr-ft- Emissivity %F)	And the second of	Existing 1 Heat Loss 1 (MBtu)	Pryposed Heat Loss (MBtu)	Savings (MBtu)
[4]	181	101	lal	[8]	I E I	191	181	-	131	[K]	11 1	MI	- I W	101	P	0.1	181	[8]	1.1.1	[0]	171
								1								-					
MTHW 90 Degree Elbow	-1 1/2	Water	185.0	5,830	5.0	3.6	1.61	1.90	0.65	227.0	70.0	1.00	0,0	0.93 0.0	0.0225	2.0	0.93 0	0,0225	1.936	464	1,472
MTHW Straight Pipe	3 1/2	Water	185.0	5,830	9.0	2.0	193	1.90	99.0	227.0	70:00	- 007	0.0	0.93 0.0	0.0225	2.0	0.93	0225	3,765	902	2,863
MTHW 90 Degree Elbow	.2	Water	185.0	5.830	9.0	3.0	3.07	2.38	59'0	227.0	20.07	. 007	0.0	0.93 0.0	0.0225	2.0	0.93	0225	2,420	530	068.1
MTHW Straight Pipe	2	Water	185.0	5,830	5.0.	12.0	2.07	2.38	9.65	227.0	70.0	1.00	0.0	0.93 0.0	0.0225	2.0	0.03	0.0225	8,068	1,768	6,301
Totals						26.2					-								16.190	3364	12,526

Cell Ref.	Comment
٧	Location of Pipe
B-K	Piping properties
L:M	Cold third properties, typically air
N - P	Existing insulation details
0.8	Proposed insulation details
1	(Existing Transmission - Radiation Weat Loss) x col E 1968 1,000
D.	□ (Proposed Transmission + Radintion Hem Loss) x col E ≈ P65 > 1,000
3	= [col T] - [col U].

Item	Value Units	Cell Ref	Remarks	
Henting System Efficiency	96012	[P65]	From Baseline	
Saving Adjustment Factor	0,000	18651		ľ

						Existin	Existing Piping Details	ds.					Existing Insulation Details	station Deta	ills	Proposed In	Proposed Insulation Details	sits			
Cocation	Pipe Size (inches)	-	Fluid Type Fluid (Water or Temperatu Steam)	Heating	Fluid Velocity (Rús)	Length (f)	haside Pipe Dismeter D (inches) ((Outside Pipe Diameter P (inches) Em	Cor Piping y (F	Pipe Cole onductivit Tem (Btu/hr-ft- re	Cold Fluid Cond Temperatu y- re-Air (Btu/	Conductivit y - Air Jusul (Btu/hr-ft2- Thiel	Insulation Thickness Insu (inches) Enti	Ins Con Insulation y (B	Insulation Conductivit Ins y (Btu/hr-ft Th	Insulation Thickness Ins (inches) Em	finsulation y (E	Insulation Conductivit E y (Bru/hr-fte H	Existing Heat Loss (MBtu)	Proposed Reat Loss (MBta)	Savings (WBtu)
IAI	[8]	101	lg.	[8]	IFI	161	III	=	171	IK!	LI	M	IN I	101	l b l	101	IRI	[S]	171	101	IVI
MTHW 90 Deurce Elbow	3/4	Water	185.0	5.830	5.0	16.2	0.82	1.05	0.65	727.0	70.0	001	0.0	0.93 0	0.0225	51	0.93 0	0.0225	4.161	1,493	2.668
MTHW Straight Pipe	3/4	Water	185.0	5,830	9.0	24.0	0.82		0.65		70.0	.00	0.0	0.93 0.	0.0225	1.5	-	-	6,164	2,2)1	0
MTHW 45 Degree Elbow	-	Water	185.0	5,830	5.0	26.0	1:05	1.32	59.0		T .0.02	00 00	0.0	0.93 0.	0.0225	1.5	0.03 0	0.0225	8.362	2,708	0
MTHW 90 Degree Elbow	-	Wafer	185.0	5,830	5.0	36.0	1.05	1,32	0.65	227.0	70.07	1.00	0.0	0.93 0.	0.0225	1.5	0.93 0	0.0225	11.579	3,749	7.830
MTHW Straight Pipe	- P	Wafer	185.0	5,830	9.0	119.0	1.05	1.32	0.65	227.0	70.0	0.00	0.0	0.93 0.	0.0225	1.5	0.93 0	0.0225	38,274	12,392	0 -
MTHW 90 Degree Elbow	1 1/4	Water	185.0	5,830	5.0	7.2	1.38	1.66	0.65		70.07	1.00	0.0	0.93 0.	0.0225	1.5	0.03	0.0225	2.923	859	2,065
MTHW Straight Pipe	1 1/4	Water	185.0	5.830	3.0	.0.6	1.38	1.66	0.65	227.0	70.0	1.00	0.0	0.93 0.	0.0225	1.5	0.93 0	0.0225	3,654	1,073	2,381
MTHW 45 Degree Elbow	1 1/2	Water	185.0	5.830	05.	4.0	1.61	1.90	0.65	227.0	70.0	1.00	0.0	0.93 0.	0.0225	2.0	0.93 0	0,0225	1,859	511	1,413
MTHW 90 Degree Elbow	1 1/2	Water	185.0	5,830	5.0	0.0	1.61	1.90	0,65	227.0	70.07	1.00 0.	0.0	0.93 0.	0.0225	2.0	0.93	0.0225	4,182	1,002	3,180
MTHW Straight Pipe	1 1/2	Water	185.0	5,830	5.0	4.0	197	1.90	0.65	227.0 7	70.0	00	0.0	0.93 0.	0.0225	2.0	0.93 0	0.0225	1.859	445	1,413
MTHW Straight Pipe	3 1/2	Water	185.0	5,830	5.0	18.0	191	1.90	59.0		70.07	0.00	0.0	0.93 0.	0.0225	2.0	0.03	0.0225	8,365	2,004	6,361
MTHW T Intersection	1 1/2	Water	185.0	5,830	5.0	0'81	191	1.90	0.05	227.0	70,0	1.00	0.0	0.93	0.0225	2.0	0.93 0	0.0225	8,365	2,004	6,361
DHW 90 Degree Elbow	1.1/4	Water	125.0	8,760	5.0	8.01	1.38	1.66	0.65	227.0	70.07	0.00	0.0	0 93 0	0.0225	1.0	0.03	0.0225	2,923	1,128	0
DHW Straight Pipe	1.1/4	Water	125.0	8.760	5.0	13.0	1.38	1.66	59'0	227.0	70.07	1.00	0.0	0.93 0.	0.0225	1.0	0.03	0.0225	2.977	1,149	. 0
DHW 45 Degree Elbow	.1 12	Water	125.0	8,760	5.0	3.0	1.61	1.90	0.65	227.0	70.0	1.00	0.0	0.93 0.	0.0225	1.5	0.93	0.0225	929	222	653
DHW 90 Degree Elbow	1 1/2	Water	125.0	8.760	5.0	1.5	191	061	59.0		70.07	00.1	0.0	0 93 0	0.0225	1.5	0 660	0.0225	1.673	498	1.175
DHW Straight Pipe	1 1/2	Water	125.0	8,760	5.0	18.0	1.61	1.90	0.05	227.0	70.07	1.00	0.0	0.93 0.	0.0225	1.5	0.93 0	0.0225	5,576	1,061	0
DHW T Intersection	3 1/2	Water	125.0	8,760	3.0	2.4	1.61	1.90	0.65	227.0	70:0 - 1.	0.00	0.0	0.93 0.0	0.0225	1.5	0.93 0	0.0225	743	221	522
							-				100			1	1						
Totals						341.0			-										114,568	35,318	36,221

Cell Ref.	Comment
A	Location of Pipe
B-K	Piping properties
L-M	Cold fluid properties, typically air.
d-N	Existing insulation details
6-8	Proposed insulation details
E	⇒ (Existing Transmission + Radintion Heat Loss) x col E + P65 + 1,000
D.	= (Proposed Transmission * Radiation Heat Loss) x [col E] = [P65] = 1.000
>	=[solT]-[solU]

fem	Value	Units	Cell Ref	Remarks
cating System Efficiency	82.1%		[P65]	From Baseline
wing Adjustment Factor	9609		P65	

Page 11 of 12

Putnam County, NV Burchetta Building (Law Dept) - 48 Gleneid, Pipe Insulation

						Existin	Existing Piping Details	ils				-	Existing	Existing Insulation Details	tails	Proposed	Proposed Insulation Details	etails			
Cocation	Pipe Size (inches)		(Water or Temperatu Steam) re (*F)	Heating Hours	Fluid Velocity (fils)	Length (f)	Inside Pipe Diameter D	Outside Pipe Diameter P (inches) Em	Píping Co. Emissivity	Pipe Co conductivit Te (Btu/hr-ft- 1	Cold Fluid Conductivi Femperatu y - Air re - Air (Bur/hr-ft2 (eF)	-	Insulation Thickness In (inches) E	Insulation y	Insulation Conductivit Insulation y (Btu/hr-ft-Thickness °F) (inches)		Insulation Conductivit Insulation y (Bu/hr-ft Emissivity °F)	Insulation Conductivit y (Btu/hr-ft	Existing Heat Loss (MBtu)	Proposed Heat Loss (MBta)	Savings (MBtu)
IAI	181	101	[0]	(E)	IFI	[6]	181	[1]	[3]	IK!	[1]	[M]	l N l	101	I b i	[6]	181	[8]	171	[0]	171
								+	+												
MTHW 45 Degree Elbow	3/4	Water	185.0	5,830	5.0	6.0	0.82	1,05	0.05	227.0	70.0	1.00	0,0	0.03	0.0225	1.5	0.93	0,0225	1,543	553	0
MTHW 90 Degree Elbow	3/4	Water	185.0	5.830	3.0	7.2	0.82	1:05	59'0	227.0	-0000	1.00	0.0	0,93	0.0225	1.5	0.93	0,0225	1.851	564	1,187
MTHW 90 Degree Elbow	3/4	Water	185.0	5,830	- 0.0	34.2	0.82	1.05	59'0	227.0	70.0	1.00	0.0	0.93	0.0225	1.5	0.03	0.0225	8,793	3,154	5,639
MTHW Ball Valve	*/E	Water	185.0	5,830	9.0	32.8	0.82	1.05	0.65	227.0	70.0	1.00	0,0	0.93	0.0225	1.5	0.93	0,0225	8.433	3,025	5,408
MTHW Straight Pipe	3/4	Water	185.0	5,830	9.0	0.9	0.82	1.05	0.65	227.0	70.0	1.00	0.0	0.93	0.0225	1.5	0.03	0.0225	1,543	553	0
MTHW Straight Pipe	3/4	Water	185,0	5,830	5.0	89.0	0.82	1.05		227.0	70.0	1.00	0.0	0.93	0.0225	1.5	0.03	0.0225	22,883	8,209	0
MTHW T Intersection	3/4	Water	185.0	5.830	3.0	4.8	0.82	1.05	0.65	227.0	76.0	1.00	0.0	0.93	0.0225	1.5	0.93	0.0225	1,234	443	0
MTHW Flo-Clicck		Water	185.0	5,830	.50	16.4	1.05	1.32	59'0	227.0	20.0	1.00	0.0	660	0.0225	1.5	0.03	0.0225	5.281	0,710	3,571
MTHW In-Line Pump	1.	Water	185.0	5,830	5.0	10.04	1.05	1,32	59'0	227.0	70.07	1.00	0.0	0.93	0.0225	1.5	0.93	0.0225	12,880	4,170	8,710
MTHW 90 Degree Elbow	11.17	Water	185.0	5,830	5.0	1.8	191	06.1	0.65	227.0	70.0	1.00	0.0	0.93	0.0225	2.0	0.93	0,0225	837	201	637
MTHW 90 Degree Elbow	3 1/2	Water	185.0	5,830	3.0	3.6	1.61	1.90	99.0	227.0	20.0	1.00	0.0	16.0	0.0225	2.0	0.03	0.0225	1,675	401	1,274
MTHW Straight Pipe	1 1/2	Witter	185.0	5,830	5.0	7.0	191	1.90	0.05	227.0	- 0.07	1.00	0.0	0.93	0.0225	2.0	0.93	0.0225	3,257	780	2,476
MTHW Straight Pape	1.1/2	Water	185.0	5,830	5.0	3.0	191	061	59'0	227.0	70.07	1.00	0.0	0.93	0.0225	2.0	6.03	0.0225	1,396	334	1901
MTHW T Imersection	1 1/2	Water	185.0	5,830	5.0	7.2	1.61	1.90	59'0	227.0	70:0	1.00	0.0	0.93	0.0225	2.0	0.03	0.0225	3,350	802	2,547
MTHW T Intersection	0.12	Water	185.0	5,830	3.0	0.0	1.61	1.90	.65	227.0	20.00	1.00	0.0	0.93	0.0225	2.0	0.93	0.0225	2.791	699	2.123
											4			7				2	-	The state of	12 11 11 11 11
Totals						265.0												r	77,746	25,669	34,632

Cell Ref.	Comment
٧	Location of Pipe
B-K	Piping properties
L-M	Cold fluid properties, typically air
d.N	Existing insulation details
S-0	Proposed insulation details
	= (Existing Transmission + Radiation Hear Loss) x col E + P65 + 1,000
P.	 (Proposed Transmission * Radiation Heat Loss) x cot E = 1 Po3 = 1,000
Λ.	Tool TI Lool III

tem	Value	Units	Cell Ref	Remarks
Reating System Efficiency	82.1%		[bes]	From Baseline
Saving Adjustment Factor	9600		1 P65 1	

Page 12 of 12

ECM 16: Boiler Replacements

Putnam County, NY	
Energy and Demand Savings Summary	
Measure ID:	16
Measure Name:	Boiler Replacements
Measure Location:	
Engineers:	

Site Name:		Hwy3	Summary
Item	Units	Savings	
Electricity			1.5
Energy On-Peak	kWh		0
Energy Off-Peak	kWh		0
Energy Total	kWh	0	0
Demand On-Peak, Monthly	kW		0.0
Demand On-Peak, Annual	kW		0.0
Demand Off-Peak, Monthly	kW		0.0
Demand Off-Peak, Annual	kW		0.0
Fossil Fuel			0
Natural Gas (NG)	CCF		0
Liquid Propane Gas (LPG)	Gallons		0
Steam	Mlbs		0
Fuel Oil, #2	Gallons	352	352
Fuel Oil, #4	Gallons		0
Fuel Oil, #6	Gallons		0
Solar Value Stack	\$		0
Water			0
Water Savings	kGallons		0
Sewer			0
Sewer Savings	kGallons		0

Highway Department - Building 3 Dispatch/Garage Boiler Replacements Putnam County, NY

The state of the s						Existing Oce	Occupancy Schedule	edule		Proposed E.	Proposed EMS Operating Hours	g Hours						Proposed		Savings
M.C Enthalpy Btu/lbma		01-08 Hours	09-16 Hours	17-24 Hours	Total Bin Hours	Occ On- Peak Hrs.	UnOcc On- Peak Hrs.	Occ Off- Peak Hrs.	UnOcc Off- Peak Hrs.	Occ On- Peak Hrs.	UnOce On- Peak Hrs.	Oce Off:	UnOce Off- Peak Hrs.	Interacted Occ. Heat Load (MBH)	Interacted UnOcc Heat Load (MBH)	Occ. Heat Usage (MMBTU)	UnOce Heat Usage (MMBTU)	Occ Cooling/He ating Energy Consump. (MMBTU)	UnOcc Cooling/He ating Energy Consump. (MMBTU)	Heating Energy Savings (MMBTU)
0	_	Э	я	9	=	-	,	X	r	M	Z	0	ь	õ	×	S	T	0	۸	W
	-																			
10	0'0	0	0	0	0.	0	0	0	0	0	0	0	0							
10	0'0	0	0	0	0.	0	0	0	0	0	0	0	0							
٦	0'0	0	0	0	0	0	0	0	0	0	0	0	0							
٦	0'0	0	17	5	-61	5	14	0	0	7	12	0	0							
٦	0'0	0	80	13	.93	22	71	0	0	36	57	0	0							
١	0'0	00	167	90	225	54	171	0	0	87	138	0	0							
٦	0.0	35	216	108	359	85	27.4	0	0	139	220	0	0							
	0.0	83	267	174	524	125	366	.0.	-0	203	321	0	0							
2	0.0	221	316	192	862	061	809	0	0	309	489	0	0							
-	0.0	279	289	344	-912	217	695	0	.0	353	688	0	0							
2	0.0	287	248	295	830	861	632	.0	0	321	509	0	0	(43)	(4)	3	7	£	. 9	1
2	0.0	280	288	311	879	209	670	.0	0	340	539	0	0	(55)	(20)	7	- 21	4	18	E.
7	0.0	291	168	242	701	167	534	.0	.0	271	430	0	0	(74)	(35)	- 6	27.	8	24	#
-	0.0	255	212	237	704	168	536	0	0	272	432	0	0	(06)	(51)	12	38	11	34	S
7	0.0	330	192	244	766	182	584	O	0	296	470	0	0	(106)	(99)	1.1	. 52	1.5	47	1
7	0.0	236	163	248	647.	154	493	0	0	250	397	0	0	(121)	(82)	1.7	. 54	16	48	1
7	0.0	206	95	132	433	103	330	0	.0	168	265	0	0	(137)	(26)	14	43	12	38	.9
7	0.0	159	89	- 79	306	73	233	0	0	118	188	0	0	(152)	(113)	11	35	10	31	5
~	0.0	. 49	51	73	161	45	146	0	0	7.4	117	0	0	(168)	(128)	80	24	7	22	3
7	0.0	45	57	48	150	36	114	0	0	58	92	0	0	(183)	(144)	7	- 21	9	- 16	E.
7	0.0	53	.20	37	110	26	84	0	.0	43	29	0	0	(661)	(154)	9	17.	5 -	16	ri
7	0.0	58	.9	21	85	20	-65	0	0	33	52	0	0	(214)	(175)	5.	15	.	13	ci
,	0.0	24	.0.	1.	25	.6	61	D.	D.	01	1.5	0	0	(230)	(190)	1.	.5	1.	4	- T -
7	0.0	3	0	0	3.	1	2	0	0	1	2	0	0	(245)	(206)	0	1	0	1	0
7	0.0	0	0	0	0	0	0	.0	0	0	0	0	0	(261)	(222)	.0	.0	0	0	0
2	0.0	0	0	0	0	0	0	0	0	0	0	0	0	(276)	(237)	0	0	0	0	0
~	0.0	0	0	0	0	0	0	0	0	0	0	0	0	(292)	(253)	0	0	0	- 0	0
	.,	2,920	2,920	2,920	8,760	2,086	6,674	0	0	3,389	5,371	0	0			118	359	106	322	69

Cell Ref.	Continent
A-H	TMV-3 Weather Data for Danbury, CT
1-1	Occupied hours as per the RFP data
M-P	Equipment operating hours after EMS is installed
0	Interacted Occupied Heating loads (MBH)
R	Interacted Unoccumed Heating loads (MBH)

ssumptions:	Value	Cart	CELL	Description
			REF	
xisting Heating Plant Efficiency	29.0%		R43	Baseline Boiler Efficiency
roposed Heating Plant Efficiency	88.0%		R44	Proposed Boiler Efficiency

| Heatings = -(II col N | 1 + [col O]) x MINI(col O | 1 + internal gains, 0) + IF(| col I | 1 + [col M] + [col O]) (II col I | 1 + [col N] + [col O]) x MINI(col I | 1 + [col O]) x MINI(col O | 1 + internal gains, 0) + IF(| col I | 1 + [col N] + [col O]) (II col M | 1 + [col O]) - (I col I | 1 + [col O]) + ININ(| col O | 1 + internal gains, 0) + IF(| col I | 1 + [col O]) (II col M | 1 + [col O]) - (I col I | 1 + [col O]) x MINI(| col O | 1 + internal gains, 0) + IF(| col I | 1 + [col O]) (II col M | 1 + [col O]) - (I col I | 1 + [col O]) x MINI(| col R | 1 + internal gains, 0) + IF(| col I | 1 + [col O]) (II col M | 1 + [col O]) - (I col I | 1 + [col O]) x MINI(| col R | 1 + internal gains, 0) + IF(| col I | 1 + [col O]) (II col M | 1 + [col O]) - (I col I | 1 + [col O]) x MINI(| col R | 1 + internal gains, 0) + IF(| col I | 1 + [col O]) (II col M | 1 + [col O]) - (I col I | 1 + [col O]) x MINI(| col R | 1 + internal gains, 0) (II col M | 1 + [col O]) (II col M | 1 + [col O]) (II col M | 1 + [col O]) x MINI(| col O | 1 + internal gains, 0) (II col M | 1 + [col O]) (II col M | 1 + [col M]) (II col M | 1 + [col M]) (II col M | 1 + [col M]) (II col M | 1 + [col M]) (II col M | 1 3

Page 2 of 2

ECM 17: Window Replacements

Putnam County, NY	
Energy and Demand Savings Summary	
Measure ID:	17
Measure Name:	Window Replacements
Measure Location:	
Engineers:	

Site Name:		Golf	Summary
Item	Units	Savings	
Electricity			
Energy On-Peak	kWh	252	252
Energy Off-Peak	kWh		0
Energy Total	kWh	252	252
Demand On-Peak, Monthly	kW		0.0
Demand On-Peak, Annual	ΚW		0.0
Demand Off-Peak, Monthly	kW		0.0
Demand Off-Peak, Annual	kW		0.0
Fossil Fuel			0
Natural Gas (NG)	CCF		0
Liquid Propane Gas (LPG)	Gallons		0
Steam	Mlbs		0
Fuel Oil, #2	Gallons	397	397
Fuel Oil, #4	Gallons		0
Fuel Oil, #6	Gallons		0
Solar Value Stack	\$		0
Water			0
Water Savings	kGallons		0
Sewer			0
Sewer Savings	kGallons		0

Putnam County, NY Putnam National Golf Club - Clubbouse Energy Savings Analysis

TMY-3 Wes	TMY-3 Weather Data for Dunbury, C.1	Danhary, C.					EST	sting Ovupn.	Existing Overpoory Schedule		Pres	Progneed EABS Operat	perating Hours		Custing						ĺ	Proposed						Sav	Savioge			
Anth Temp Din deg. F	Ave Temp deg 1	H.W.DTN	MC Enthalpy (Stuthona 03	eas Hours	61-58 House PP-46 House		Ford Bin. O	Our One Chi	Cadaz On Oc Neak Ilin Pea	Occord. Unit	Noscoff. Oc Pedrific. Pos	Occ On- UniOn Peak Ure. Test	Unities One Oct Off. Test the Peak thre	off. United Officer	Occ. Wandow. Trans. Conf. Oct. Heat Load Tin. (SIDH)	ive. Window Conf. Trans. Cool conf. Rear Lond (MSI).	A UA (OTT-be deg. D	-{Sec Westlers Infiltration to Load (MBH).	Vistace Window Indigration Load (MRII)	Occ Confeng Ben ting Energy Coresmop (MMSTEU).	(MAze Cooling Box ting Energy Consump (MMRRU)	Occ Window Frum Credy (Jeat Load (MBI))	Uncke Window Dura Coul Heat Load (Mill)	A (BIL) In the sky, F)	Oxy Window utilization by Load (MIMI)	Undec Window Co Willeration D Load ((MIRI) (Occ Coding/Hoa Ca Exp Facing 10 Consump C (AMIDTU) (A	Undex Coaling Ban ting Energy C Consump S (MMOTU), (M	Osc. Cending Cashings Savings S	Unfloc Cooling Savings MMRTU (N	Osc Bening Savings MMBTO 0	Undec Heating Savinge MAOOTU)
V	9	9	q	1	1	0	н	-	3	. 3	1	M	N 0	a.	0	B	×	1		1	11	X		7	W	NB AB	AC .	- qv	AE	AF	- OV	MI
Cooling						-		-	-		-	-																				
103 to 110	107.5	0.0	0.0	o.	0	0	- 1	0		0	0	0	0 0	=		1	90%	.25	123	0	00	28	53	851	4	4	0	0	0	0		
200 to 105	102.5	0.0	0.0	. 0	0.	.0	0	0	.0	0	-0	0	.0.	0	238		906	22	44	.0.	0	36	21	158	5	7	-0	0	.0	-0		
95 to 100	57.6	0.0	0.0	. 0	. 0	. 0		-0	.0	0	0	0	0	B.		-	800	18	1.4	. 0	ď	22	10	851	7	3	. 0	0	.0	. 0		-
- 99 to 95	92.5	76.2	0.0	. 0	17	2.	- 61	10	10	0	0	10 I	10	.0	61	13	806	14	- 10	- 0	- 0	1.1	12	851	,	3	. 0	-0	- 0	0		
85 to 90	87.5	13.2	0.0	- 0	80	13	- 63	11	44		. 0	41 4	0 45	0	11		806	.11	40	0	. 0	13	8	158	1		0	.0.	0	0		1
80 to 83	82.5	69.5	0.0	*	101	-	225	113	113	0	0.	113	113 0	0	101		806	3	.0	-	.0	6		158	.2	-1	0	0.	0	. 0		
75 to 80	77.5	65.3	0.0	35	- 216	108.			180	0	-0	180		.0	5	0	806	4	.0.	1	.0.		9	XST	1	0	0	9	0	- 0		,
70 to 75	72.5	62.4	0.00	1%	26.7			262	H	0	0		0. 292	-	0	7	900	0	0	0	0		0	851	0	0	0	0	0	0		,
65 tar 70.	67.3	5.65	0.0	331	316	361	208		356	0.	300	36	0. 66	0	0	0	90%	:0:	ū	0	0.	- 0	0	158	0	.0	0	0	0	-0		
- 60 10 05	62.5	549	0.0	279	289	H		456	456		0	456 45	Sf . 0		0	.0	900	0	0	0	0	-0-	0	851	- 0	0	- 10	.0	0	. 0		
Heating		-			1			1				1	1		0							1					1					
33 to 60	57.5	484	0.0	282	248	295				.0	-0		415 0	0			806	.(g)-	(1)	. 0 .	-1	(11)	(2)	881	(2)	(0)	. 0	.0			-0-	- 0-
30 to 55	52.5	855	0.0	2303	288			_		0	- 0		40 0	0.	_		506	(6)	(4)	. 0	5	(13)	(9)	158	(2)	(1)	.0.	3			- 0.	er
45 to 50	47.5	41.5	0.0	Jou	398				351	0	0	351 33	0 15	0			806	(11)	(9)	6	7	1610	(11)	158	(3)	(2)	3	\$			1	De
40.00.45	42.5	38.0	-0.0	557	212	237	704	352		. 0	0		52 0	.0	(25)		806	(14)	(9)	. 9	111	(23)	(15)	K51	(0)	(I)	,	90			.7	
35 to 40	37,5	383	0.0	310	797			383	383	0	0.	383	83 63	0			908	(91)	(11)	31	36	(28)	(19)	158	(4)	(3)	2	14			- 3	
30 to 35	32.5	19.6	0.0	236	163		647	324		. 0	0	324 324	24	.00			90K	(60)	(14)	12		(32)	(23)	158	(3)	(3)	*	(2)				4
25 16 30	27.5	24.1	0.0	206	56	135				. 0	0.		217 0	0		(50)	906	(21)	(16)	10.	13	(36)	(28)	158	(5)	(4)	1	- 6			40	+
2010-25	22.5	37.6	0.0	150	- 68	-	300				0		53 0	Ð			806	(23)	(161)	- 6	11	(40)	(32)	851	(9)	(5)	9.	01			-	3
15 to 20	17.5	691	0.0	- 19	. 31	73.	161		96	0	. 0			.0			806	(29)	(21)		40	(45)	(36)	851	(9)	(5)		- 1			2	
10 to 15	12.5	10.1	0.0	45	- 57		150	7.5	75		. 0	7.5		0	(52)		806	(28)	(23)	. 9	1	(49)	(40)	158	0	(9)	4				2	44
540 10	7.5	6.9	0.0	.53	20	37	110	55	. 55	0	0	55	55 0	.0			806	(31)	(20)		9	(53)	(45)	851	(8)	(9)	3	4			- I	24
0.40.5	2.5	67	0.0	. 58	. 9	.21	-88	43	43	0	-0-	43.	0.	0			806	(33)	(28)	P	. 3	(25)	(6)	X51	(8)	(7)	3.	3			1	1
5 to 0	(2.5)	0.0	0.0	24	0	- 1	. 25	13	13	0	0	13 1	0. 13				806	(90)	(31)	7	×	(62)	(53)	158	(0)	(90)	1				- 10	- 0
-10 to -5	(7.5)	0.0	0.0		W	0	*		/1	Q	-0		0	0		H	2006	(38)	(33)	W	0	(199)	(52)	158	(340)	(8)	0	0			-10	-0.
-12 to -10.	(123)	0.0	0.0	0	. U	0	-0.0	. 0	0		. 0		0 0				.806	(41)	(36)		o,	(00)	(62)	. 158	(10)	(6)	. 0				. 0	-0.
-20 to -15	(17.5)	0.0	- 60	. 0	- 0,	- 0.	- 0	. 0	. 0), 0	. 0	0	(60)		806	(43)	(38)	. 0	- 0	(74)	(99)	158	(11)	(10)		. 0		-	- 0	. 0
-25 to -20	(22.5)	0.0	-0.0	0	. 0	. 0	. 0	. 0	. 0		- 0	0	0 0	0.	(84)		806	(46)	480	0	- 0	(60)	- (20)	881	(11)	(10)	0	-0.			9	.0
				2.920	2.020	2 926 5	8.760	4.3801	4.380	.0.	7.00	4380	1,380	.0						*	01108				7		- 63	7	-		- E	4.6
			1	1	ł	ł	ł	ł	$\frac{1}{2}$	1	1	ł	1	1	1	1	1					1	1	1	1	1		1	1	1		1

Ref. Comment		Assumptions:		Value Unit	TI30 IN	Description	
[AMS-3 Weather Data for Databary, CT.					REF		
Ostopical bruny after invialtation of EMS		Total Winding Area	Area	2,171 SF	NC43		
Overstein finany after installation of EARS		Window Repl	finitive Replacement Area	48 81F1	AC34		
Cooling = [oil S] = 1,000 x C [oil B] = AA59 3, Haring = [oil S] = 1,000 x AC50 + [oil B])).		Existing Window Uvalue	nw Uvalue	S-I galt MIT vides F-S	deg F-8 AC45		
Cocling = [col S] = 1,000 x ([col B] = AA60), Heating = [col S] = 1,000 x (AC00 - [col B]))		Proposed Window Usuline	dow Usulas	8-11 geb DRTC deg E-8	deg 1-8 AC46		
- AC44 x AC45		Existing Wind	Kinding Window Crack, Area	38 792	AC#		
Existing excupied window infiltration leasting foads (AIBH)		Proposed Win	Proposed Window Crack Area	0.74 SF	AC48		
Existing uniocoupled window in Otration floating locals (AIBB)		Crack Area W	back Area Windward Diversity	25.0%	AC49		
Cauling - C [col Q] = 1 sol T [3 x (1 col 1] = [tol K, [3 + 1,000 = AC55 x AC59		Average Sump	Werage Statistics Wind Speed	10.0 MPH.	ACS0		
Harbing = MIN(Lod II + [cot K], [cot K], [cot M] = [cot OD x MIN(Lod O) = [cot M] + internal gains, 20 + 1F([cot II] = [cot K] = [cot M] + [cot OD x MIN(Lod O) = [cot M] + [cot K] + [cot M] + [cot	((teal [1 Jeal K1) - Cleat Att = [out O)) s Attivition B1 = [out 11] + internal gains , 07.03 = 1,000 - AC52	Average Wint	Werage Winter Wind Speed	7.0 MPH	18:3V		
Cooling = (1 oil R 1 = 1 oil 11) x (1 oil 11 = 1 oil 11 + 1 dMo = ACS9 e ACS9		Proposed Heat	repool Hotting Plant Efficiency.	-70.0Ps	ACSZ		
	Leat O [) - (Leat I] = Ford K [b) & MIN(Leat O [= 1 cut Tr] + inserted gates, [0]) = 1,000 = 3,022.	Percent Building Cooled	ng Cooled	100.0%	ACS		
-(1xd Q = 1xd S x xd Z)		Cooling Plant Efficiency	Efficiency	\$6.0 EER	ACS		
(cot R cot S cot S cot S)		Cooling Plant Efficiency	Efficient	293 CGP	ACS5	- ACS1343	
- ACH # ACH							
Proposed occupied window letifitation benting leads (MRHI).		Average Spac	Overage Space Temperatures				
Proposed unoccupied veindow entitration housing lauks (AHII			Cooling	Uroting		Description	
Conding = (aid X + aid AA 3x (pal 1 + aid K 1 + 1,000 + AC53 x AC53 .		Ovenment	72.0 AAS9	70:0 AC	ACS9		
[Batting = MIN([ad 1] + [ad M] - [ad M] - [ad N]	. ((Gold II = Gold KI) = (Bold MI = [Bold O)) x MIN([bold Y] = [bold AB] = internal game, O), O) = DOO(= AC\$2	UnOccupied	78.0 4.160	OV GOD AC	ACKO		
Coeling - (Leid X I - Leid AB I) x (Leid I I - Leid I I) + 1,000 = AC55 x AC5							
Heating — Q oot N 1 = Loof P Dx MING oof X 1 = Loof AB 1 + internal gains, O + IEQ oot 1 1 = 1 cot N 1 = Loof O 1 ; (G cot M 1 = 1 cot O 1 ; (G cot M 1 = 1 cot O	-1 od O O -Col 11 -1 col E 19 v MIX(1 col E 1 -1 col AA 1 - internal gains, US = 1.000 + AC\$2						
= 1 vid V I = [val AC]							
= 046 W - (ad AD							
= tril W - sol AD							

Assumptions:		Value	Turk	7733	Description
				REF	
Fotal Winding Area		2,171	- IN	NC.43	
Window Explanement Area	Area	1318	AS	AC 44	
Existing Window Uvalue	16	1970	Brit solog F-S	ACAS	
Proposed Window Usulas	, and	090	HTT. deg I-8	98.3V	
Existing Window Crack Area	Area	2.97	38	AC#7	
Proposed Window Crack Area	3k Area	0.74	SF	AC48	
Crack Area Windward Diversity	Diversity	25,0%		0F3V	
Average Stanttast Wind Speed	Spend	10.0	WHI.	ACSD	
Werage Winter Wind Speed	speed	270	MPII	ACSI	
Proposal Heating Plant Efficiency	Efficiency	70.0%		ACSZ	
Percent Bindling Cooled	P	100,096		ACS	
Cooling Plant Efficiency	96	9005	EER	ACS	
Cooling Plant Efficiency		2.03	- 400	ACSS	- ACS13.413
Average space temperatures	comme		I		
Cooling	ing	Beoting			Description
Acopted 7	72.0 AAS9	2000	ACSU		
ChOccupind 7.	78.0 4.460	1000	ACSO		

10/31/2019

Pdge 2 012

ECM 18: Solar PV Array

Putnam County, NY		
Energy and Demand Savings Summary	nary	
Measure ID:	18	
Measure Name:	Solar PV Array	
Measure Location:		
Engineers:		

Site Name:		Bruen	Gov1	Gov2	Gov3	Kern	Summary
Item	Units	Savings	Savings	Savings	Savings	Savings	
Electricity							
Energy On-Peak	kWh	53,013	33,689	76,419	895'86	53,968	315,658
Energy Off-Peak	kWh						0
Energy Total	kWh	53,013	33,689	76,419	98,568	53,968	315,658
Demand On-Peak, Monthly	ΚW						0.0
Demand On-Peak, Annual	kW	32.2	31.9	69.1	92.0	32.5	257.7
Demand Off-Peak, Monthly	kW						0.0
Demand Off-Peak, Annual	ΚW						0.0
Fossil Fuel							0
Natural Gas (NG)	CCF						0
Liquid Propane Gas (LPG)	Gallons						0
Steam	Mlbs						0
Fuel Oil, #2	Gallons			3	JT -		0
Fuel Oil, #4	Gallons						0
Fuel Oil, #6	Gallons						0
Solar Value Stack	S	382	2,041	4,100	5,769	352	12,644
Water					J. 1		0
Water Savings	kGallons						0
Sewer							0
Sewer Savings	kGallons						0

Putnam County, NV Solar PV Array David D. Bruen County Office Building

Month	Production	Gen. kWh.	% consumed onsite	Consumed kWh	Onsite Energy Savings	Exported kWh	Value Stack Credit Total Savings	Total Savings
lanuary	4%	2,592	%86	2,553	\$187	40	\$3	\$190
February	5%	3,086	%06	2,778	\$203	308	\$24	\$227
March	8%	4.829	94%	4,517	\$330	312	\$24	\$354
April	10%	5,611	93%	5,214	\$381	398	\$31	\$412
May	11%	999'9	%06	5,973	\$437	693	\$53	\$490
lune	13%	7,293	%06	6,530	\$477	762	826	\$536
luly	13%	7,264	%06	6,560	\$480	704	\$54	\$534
August	11%	6,312	%56	6,004	\$439	308	\$24	\$463
September	%6	5,403	%98	4,630	\$338	773	826	\$398
October	79,0	4,028	94%	3,772	\$276	256	\$20	\$295
November	2%	2,810	%68	2,495	\$182	315	\$24	\$207
December	4%	2,090	95%	1.988	\$145	102	88	\$153
Total		57,985		53,013	\$3,875	4,972	\$382	\$4,257
				91%		%6		

Item	Value	Units	Jeal les	Remarks
Size	45.6	kW	[C23]	
Generation	57,985	kWh	[C24]	
Consumption	230,400	kWh	[C25]	
Ousite Solar Value (kWh portion of bill)	\$ 0,0731	\$/kWh	[C26]	From Bills
Value Stack	89200 8	S/kWh	[C27]	From ValueStack Cal
			[C28]	

Putnam County, NY Solar PV Array Donald B. Smith Government Campus - Building 1

Month	Production	Gen. kWh	% consumed onsite	Consumed kWh	Onsite Energy Savings	Exported kWh	Value Stack Credit	Total Savings
lanuary	4%	2,558	85%	2,186	8160	372	\$32	\$192
February	5%	3,049	71%	2,153	\$157	968	\$77	\$234
March	8%	4,783	29%	2,816	\$206	1,967	8169	\$375
April	10%	5,557	\$1%	2,860	\$209	2,697	\$232	\$441
May	12%	6,604	20%	3,292	\$241	3,312	\$285	\$525
June	13%	7,230	52%	3,771	\$276	3,459	\$297	\$573
July	13%	7,200	26%	4,005	\$293	3,195	\$275	\$568
August	11%	6,252	%09	3,769	\$276	2,483	\$213	\$489
September	%6	5,350	54%	2,900	\$212	2,450	\$211	\$423
October	7%	3,984	26%	2,362	\$173	1,622	\$139	\$312
November	2%	2,780	%19	1,856	\$136	924	826	\$215
December	4%	2,072	83%	1.717	\$126	354	\$30	\$156
Total		57,420		33,689	\$2,463	23,731	\$2,041	\$4,503
				29%		41%		

Item	Value	Units	Jai llao	Remarks
Size	45.3	kW	[C23]	
Generation	57,420	kWh	[C24]	
Consumption	75,293	kWh	[C25]	
Onsite Solar Value (kWh portion of bill)	\$ 0.0731	\$/kWh	[C26]	From Bills
Value Stack	09800 \$	S/kWh	[C27]	From ValueStack Cal
			[C28]	

Putnam County, NV Solar PV Array Donald B. Smith Government Campus - Building 2

Aonth	Production	Gen. kWh	% consumed onsite	Consumed kWh	Onsite Energy Savings	Exported kWh	Value Stack Credit	Total Savings
anuary	2%	5,618	87%	4,901	\$358	718	198	\$420
ebruary	5%	6,673	72%	4,824	\$353	1,848	\$158	\$511
March	%8	10,455	%19	6,402	\$468	4,053	\$347	\$815
April	10%	11,894	25%	6.506	\$476	5.388	\$461	\$937
May	11%	14,175	53%	7,504	\$549	129'9	\$571	\$1,119
nne	12%	15,487	26%	8,620	\$630	6,867	\$587	\$1,218
ly.	12%	15,524	29%	9,128	\$667	6,396	\$547	\$1,214
August	11%	13,536	63%	8,567	\$626	4,969	\$425	\$1,051
September	%6	11,638	57%	6,587	\$482	5,051	\$432	\$914
October	79,0	8,728	61%	5,366	\$392	3,362	\$288	\$680
November	9%5	980'9	%69	4,184	\$306	1,903	\$163	\$469
ecember	4%	4,536	84%	3,830	\$280	902	860	\$340
otal		124,350		76,419	\$5,586	47,931	\$4,100	28,687
				61%		39%		

Item	Value	Units	Jai Ilao	Remarks
Size	99.3	kW	[C23]	
Generation	124,350	kWh	[C24]	
Consumption	174,259	kWh	[C25]	
Onsite Solar Value (kWh portion of bill)	\$ 0.0731	\$/kWh	[050]	From Bills
Value Stack	\$ 0.0855	S/kWh	[C27]	From ValueStack Cal
			[C28]	

Putnam County, NV Solar PV Array Donald B. Smith Government Campus - Building 3

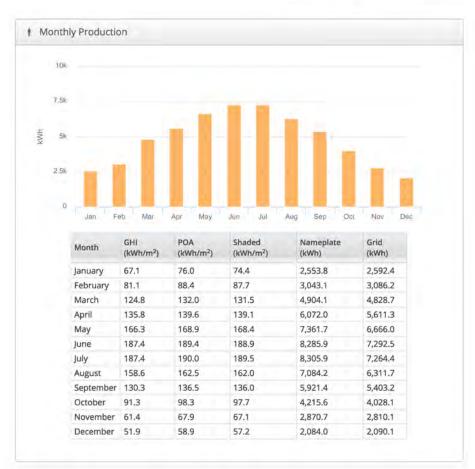
Month	Production	Gen. kWh	% consumed onsite	Consumed kWh	Onsite Energy Savings	Exported kWh	Value Stack Credit	Total Savings
January	4%	7,449	%98	6,403	\$468	1,046	06\$	\$558
February	5%	8,866	71%	6,301	\$461	2,565	\$220	\$681
March	8%	13,914	29%	8,253	\$603	5,661	\$486	\$1,090
April	10%	15,888	53%	8.369	\$612	7.520	\$646	\$1,258
May	11%	18.896	51%	9,626	\$704	9,270	8796	\$1,500
June	12%	20,692	53%	11,031	\$806	199'6	\$830	\$1,636
July	13%	20,733	57%	917,11	9888	6,017	\$775	\$1,631
August	11%	18,070	96199	11,023	908\$	7,047	\$60\$	\$1.411
September	%6	15,530	55%	8.491	\$621	7,040	\$605	\$1,225
October	79,0	11,595	%09	6,916	\$506	4,679	\$402	200\$
November	2%	8,076	67%	5,428	\$397	2,648	\$227	\$624
December	4%	6,017	83%	5,012	\$366	1,004	\$86	\$453
Total		165,724		895'86	\$7,205	67,156	\$5,769	\$12,974
				%65		41%		

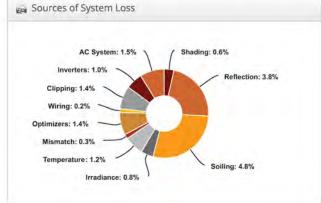
tem	Value	Units	cell ref	Remarks
ize	131.4	kW	[C23]	
Jeneration	165,724	kWh	[C24]	
Consumption	220,728	kWh	[C25]	
Insite Solar Value (kWh portion of bill)	\$ 0,0731	\$/kWh	[C26]	From Bills
/alue Stack	8 0.0859	S/kWh	[C27]	From ValueStack Calc
			[C28]	

Putnam County, NY Solar PV Array - 400W Kern Building - Health Dept/DMV/W1C

Month	Production	Gen. kWh	% consumed onsite	Consumed kWh	Onsite Energy Savings	Exported kWh	Value Stack Credit	Total Savings
lanuary	4%	2,317	%66	2,300	\$168	17.	154	691\$
ebruary	5%	2,906	%16	2,654	\$194	252	\$19	\$213
March	%8	4,821	94%	4,543	\$332	278	\$21	\$353
April	10%	5,843	94%	5,465	\$400	378	\$29	\$429
Aay	12%	6,958	%06	6,285	\$459	673	\$52	\$511
nne	13%	7,652	%06	888'9	\$504	764	826	\$562
uly	13%	7,584	%16	806'9	\$505	929	\$52	\$557
August	11%	6,544	%96	6,266	\$458	277	\$21	8479
September	%6	5,517	87%	4,774	\$349	743	\$57	\$406
October	7%	3,931	94%	3,710	\$271	22.1	\$17	\$288
Vovember	4%	2,585	%16	2,340	\$171	245	61\$	061\$
December	3%	1,893	97%	1,835	\$134	57	84	\$139
Fotal		58,550		23,968	\$3,945	4,582	\$352	\$4,297
				%26		%8		

Item	Value	Units	feel ref	Remarks
Size	47.6	kW	[C23]	
Generation	58,550	kWh	[C24]	
Consumption	260,550	kWh	[C25]	
Onsite Solar Value (kWh portion of bill)	\$ 0,0731	\$/kWh	[C26]	From Bills
Value Stack	8 0.0769	S/kWh	[C27]	From ValueStack Cal
			[C28]	




Design 1 Putnam County - David D. Bruen County Office Building, 3 county center, carmel, ny

窗 Report	
Project Name	Putnam County - David D. Bruen County Office Building
Project Address	3 county center, carmel, ny
Prepared By	Eric Anderson eanderson@ameresco.com

System Met	rics
Design	Design 1
Module DC Nameplate	45.6 kW
Inverter AC	40.0 kW
Nameplate	Load Ratio: 1.14
Annual Production	57.98 MWh
Performance Ratio	84.3%
kWh/kWp	1,270.9
Weather Dataset	TMY, 10km grid (41.45,-73.65), NREL (prospector)
Simulator Version	02438dc84d-15065d270a-ca63df14a5- d5d7833a30

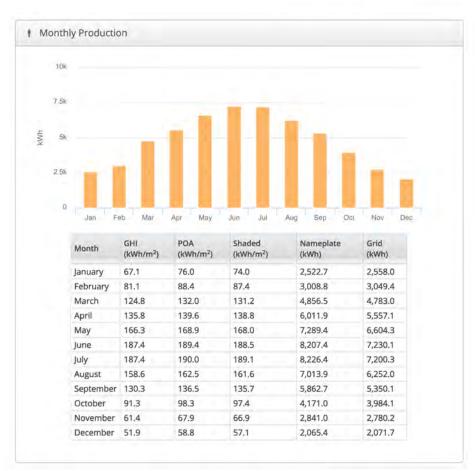
	Description	Output	% Delta
	Annual Global Horizontal Irradiance	1,443.5	
	POA Irradiance	1,508.4	4,5%
Irradiance	Shaded Irradiance	1,499.4	-0.6%
(kWh/m ²)	Irradiance after Reflection	1,442.6	-3.8%
	Irradiance after Soiling	1,373.9	-4.8%
	Total Collector Irradiance	1,373.9	0.0%
	Nameplate	62,702.4	
	Output at Irradiance Levels	62,229.2	-0.8%
	Output at Cell Temperature Derate	61,488.5	-1,296
	Output After Mismatch	61,320.7	-0.3%
Energy (kWh)	Optimizer Output	60,462.2	-1.4%
(ical(i)	Optimal DC Output	60,329.7	-0.2%
	Constrained DC Output	59,470.6	-1.496
	Inverter Output	58,867.7	-1.096
	Energy to Grid	57,984.6	-1.5%
Temperature	Metrics		
	Avg. Operating Ambient Temp		12.5 °C
	Avg. Operating Cell Temp		19.5 °C
Simulation M	etrics		
	0	perating Hours	4692
		Solved Hours	4692

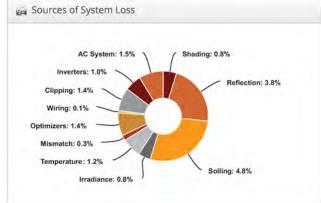
Description	Cond	lition 5	et 1											
Weather Dataset	TMY,	10km	grid (4	1.45,-	15,-73.65), NREL (prospector)									
Solar Angle Location	Mete	o Lat/L	ng											
Transposition Model	Pere	Mode	1											
Temperature Model	Sand	ia Mod	el											
	Rack	Туре		а		ь	ö		Te	mper	ature	Delta		
Temperature Model	Fixed	d Tilt		-3.5	6	-0.075		3°	C					
Parameters	Flush	Mour	nt	-2.8	i	-0.0455		0°C						
	East	West		-3.5	-3.56 -0.075		5	3°C						
	Carp	ort		-3.5	6	-(0.07	5	3°	C				
Soiling (%)	1	E	M	Α	M		1	1	A	s	0	N	D	
	20 20 15 1 1 1 1 1 1 1 1								1	15				
Irradiation Variance	3%													
Cell Temperature Spread	4° C													
Module Binning Range	-2% t	o 2%												
AC System Derate	1,509	6												
	Mod	ule			Characterization									
Module Characterizations		865M-7 osolar)			Jin! PA		JKM	365N	1_72_	RETC	_2017	0207.	pan,	
2	Devi	ce							Cha	aracte	erizatio	on		
Component Characterizations	P730	(Solar	Edge)						Mfg	Spe	c Shee	et		
THE PARTY OF THE P	SF10	1000H-I	SE10000H-US (SolarEdge)								Spec Sheet			

▲ Compo	onents	
Component	Name	Count
Inverters	SE10000H-US (SolarEdge)	4 (40.0 kW)
Strings	10 AWG (Copper)	9 (520,5 ft)
Optimizers	P730 (SolarEdge)	63 (46.0 kW)
Module	Jinkosolar, JKM365M-72 (365W)	125 (45.6 kW)

Wiring Zones				
Description	Combiner Poles	String Size	Stringing Strategy	
Wiring Zone	12	7-14	Along Racking	

Field Segme	nts								
Description	Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frame Size	Frames	Modules	Power
Field Segment 1	Fixed Tilt	Landscape (Horizontal)	5°	172.346°	0.6 ft	1x1	34	34	12.4 kW
Field Segment 2	Fixed Tilt	Landscape (Horizontal)	5°	172.346°	0.7 ft	1x1	16	16	5.84 kW
Field Segment 3	Fixed Tilt	Landscape (Horizontal)	5°	172.346°	0.7 ft	1x1	75	75	27.4 kW

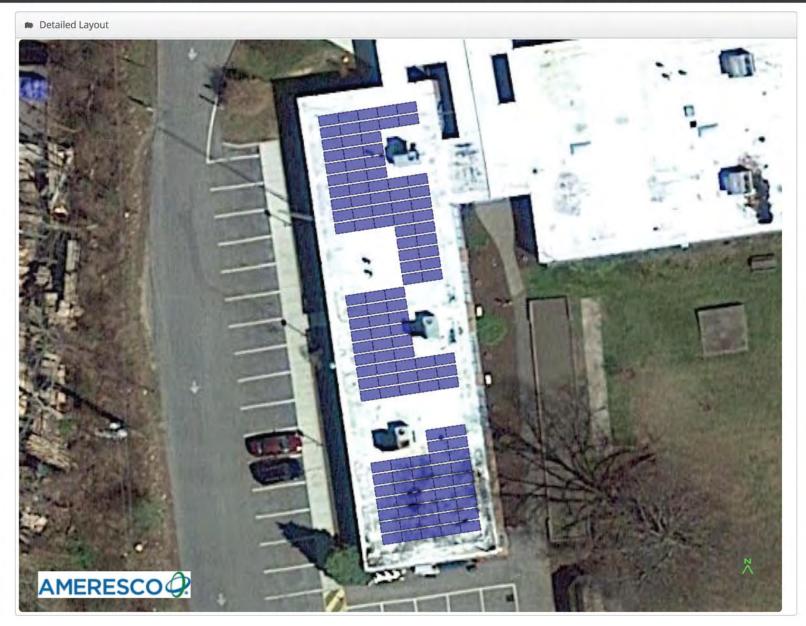



Design 1 Putnam County - Donald B. Smith Government Campus - Building 1, 110 old route 6, carmel, ny

窗 Repo	rt
Project	Putnam County - Donald B. Smith Government
Name	Campus - Building 1
Project Address	110 old route 6, carmel, ny
Prepared	Eric Anderson
By	eanderson@ameresco.com

Design	Design 1
Module DC Nameplate	45.3 kW
Inverter AC	40.0 kW
Nameplate	Load Ratio: 1.13
Annual Production	57.42 MWh
Performance Ratio	84.1%
kWh/kWp	1,268.7
Weather Dataset	TMY, 10km grid (41.45,-73.65), NREL (prospector)
Simulator Version	02438dc84d-15065d270a-ca63df14a5- d5d7833a30

	Description	Output	% Delta
	Annual Global Horizontal Irradiance	1,443.5	
	POA Irradiance	1,508.3	4.59
Irradiance	Shaded Irradiance	1,495.9	-0.8%
(kWh/m ²)	Irradiance after Reflection	1,439.7	-3.89
	Irradiance after Soiling	1,371.1	-4.89
	Total Collector Irradiance	1,371,1	0.0%
	Nameplate	62,077,2	
	Output at Irradiance Levels	61,606.9	-0.89
	Output at Cell Temperature Derate	60,873.9	-1,29
	Output After Mismatch	60,673.0	-0.39
Energy (kWh)	Optimizer Output	59,823.5	-1.49
(IVAL(I)	Optimal DC Output	59,740.6	-0.19
	Constrained DC Output	58,892.1	-1.49
	Inverter Output	58,294.9	-1.09
	Energy to Grid	57,420.5	-1.5%
Temperature	Metrics		
	Avg. Operating Ambient Temp		12.5 °C
	Avg. Operating Cell Temp		19.5 °C
Simulation M	etrics		
	O	perating Hours	4692
		Solved Hours	4692

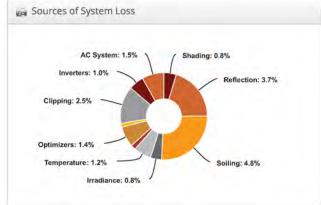

Wiring Zones

Description	Cond	ition S	et 1										
Weather Dataset	TMY,	10km	grid (4	1.45,-	5,-73.65), NREL (prospector)								
Solar Angle Location	Mete	o Lat/L	ng										
Transposition Model	Perez	Mode	E.										
Temperature Model	Sandia Model												
	Rack	Туре		a		б		Te	mper	ature	Delta		
To be a second of the second of	Fixed	-3.5	6	-0.075		3°	C						
Temperature Model Parameters	Flush	-2.8	i	-0.0455		00	0°C						
	East-	-3.5	-0.075		3°	3°C							
	Carp	ort		-3.5	6	-0.0	75	3°	C				
Soiling (%)	1	F	М	Α	M	J	1	A	s	0	N	D	
O(117)	20	20	15	1	1	1	1	1	1	1	1	15	
rradiation Variance	3%												
Cell Temperature Spread	4° C												
Module Binning Range	-2% t	0.2%											
AC System Derate	1.509	6											
	Mode	ule			Characterization								
Module Characterizations		65M-7 osolar)	2		Jink PAI	_	M365	M_72_	RETC	_2017	0207.	pan,	
	Devic	e						Ch	aracte	erizati	no		
Component Characterizations	P730	(Solar	Edge)					Mf	g Spe	c She	et		
A CORRECTION OF THE PARTY OF TH	SE10	000H-I	15 (50	larEdo	re)			Spi	Spec Sheet				

Component	Name	Count
Inverters	SE10000H-US (SolarEdge)	4 (40.0 kW)
Strings	10 AWG (Copper)	9 (336.1 ft)
Optimizers	P730 (SolarEdge)	63 (46.0 kW)
Module	Jinkosolar, JKM365M-72 (365W)	124 (45.3 kW)

Description		Combiner Poles		Str	ing Size	Stringing	Strategy		
Wiring Zone		12		7-1	4	Along Rac	king		
Field Segme	nts								
Description	Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frame Size	Frames	Modules	Power
Field Segment 1	Fixed Tilt	Landscape (Horizontal)	50	171.367°	0.7 ft	1x1	124	124	45.3 kW




Design 1 Putnam County - Donald B. Smith Government Campus - Building 2, 110 old route 6, carmel, ny

窟 Repo	rt
Project	Putnam County - Donald B. Smith Government
Name	Campus - Building 2
Project Address	110 old route 6, carmel, ny
Prepared	Eric Anderson
By	eanderson@ameresco.com

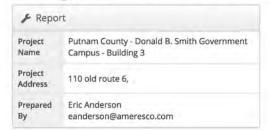
Design	Design 1
Module DC Nameplate	99.3 kW
Inverter AC	80.0 kW
Nameplate	Load Ratio: 1.24
Annual	124.4 MWh
Production	150.000
Performance Ratio	83.0%
kWh/kWp	1,252.5
Weather Dataset	TMY, 10km grid (41.45,-73.65), NREL (prospector)
Simulator Version	02438dc84d-15065d270a-ca63df14a5- d5d7833a30

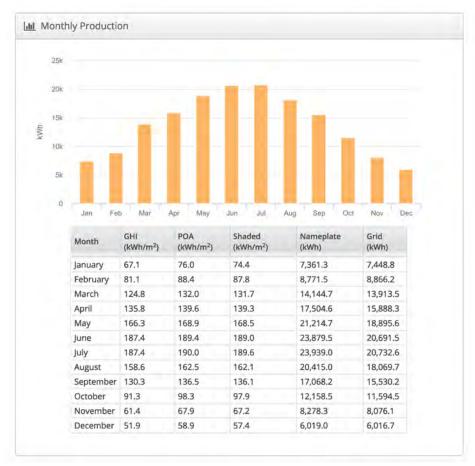
	Description		Output	% Delta
	Annual Global Horizontal Ir	radiance	1,443.5	
	POA Ir	radiance	1,508.3	4.5%
Irradiance	Shaded In	radiance	1,495.6	-0.8%
(kWh/m²)	Irradiance after R	eflection	1,439.8	-3.7%
	Irradiance aft	er Soiling	1,371.2	-4.8%
	Total Collector Irr	adiance	1,371.2	0.0%
	Na	meplate	136,179.3	
	Output at Irradian	ce Levels	135,149.1	-0.8%
	Output at Cell Temperatur	e Derate	133,538.0	-1.29
	Output After N	Aismatch	133,094.8	-0.39
Energy (kWh)	Optimize	er Output	131,231.3	-1.49
(ici)(i)	Optimal D	C Output	130,883.5	-0.3%
	Constrained D	C Output	127,551.1	-2.59
	Inverte	r Output	126,243.0	-1.09
	Energy	to Grid	124,350.0	-1.5%
Temperature	Metrics			
	Avg. Operating Ambie	ent Temp		12.5 °C
	Avg. Operating C	ell Temp		19.5 °C
Simulation M	etrics			
		- 1	Operating Hours	4692
			Solved Hours	4692

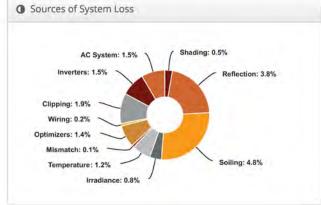
Wiring Zones

Description	Cond	ition 5	et 1	Condition Set 1								
Weather Dataset	TMY, 10km grid (41.45,-73.65), NREL (prospector)											
Solar Angle Location	Meteo Lat/Lng											
Transposition Model	Perez Model											
Temperature Model	Sand	a Mod	el									
	Rack	Туре		а		ь		Te	mper	ature	Delta	
2	Fixed	Tilt		-3,5	6	-0.0	75	3°C				
Temperature Model Parameters	Flush	Mour	ıt.	-2.8	2.81 -0.0455		0°C					
	East-	West		-3.5	6	-0.0	-0.075	3°	3°C			
	Carp	ort		-3.5	6	-0.0	75	3°	C			
soiling (%)	J	F	М	Α	М	1	1	A	S	0	N	D
	20	20	15	1	1	1	1	1	1	1	1	15
Irradiation Variance	3%											
Cell Temperature Spread	4° C											
Module Binning Range	-2% t	0.2%										
AC System Derate	1.509	6										
	Mode	ule			Cha	racte	rizatio	on				
Module Characterizations		65M-7 osolar)	2		Jink PAI	_	VI365N	M_72_	RETC	_2017	0207.	pan,
	Devic	e						Chi	aracte	erizati	on	
Component Characterizations	P730	(Solar	Edge)					Mf	g Spe	c She	et	
2.16.22.402.43.18	SE10	000H-I	15 (50)	larEde	re)			Spi	ec Sh	eet		

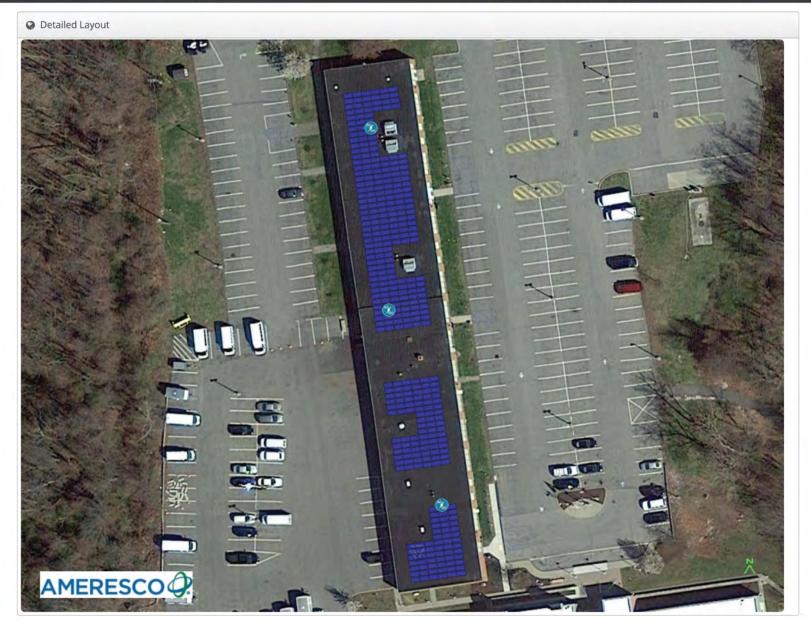
▲ Compo	onents	
Component	Name	Count
Inverters	SE10000H-US (SolarEdge)	8 (80.0 kW)
Strings	10 AWG (Copper)	20 (1,898.7 ft)
Optimizers	P730 (SolarEdge)	140 (102,2 kW)
Module	Jinkosolar, JKM365M-72 (365W)	272 (99.3 kW)


Description	Combiner Poles			Str	ing Size	Stringing	Strategy		
Wiring Zone	ng Zone 12		12			Along Rac	king		
Field Segme	nts								
Description	Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frame Size	Frames	Modules	Power
Field Segment 1	Fixed Tilt	Landscape (Horizontal)	50	171.742°	0.7 ft	1x1	272	272	99.3 kW




Design 2 Putnam County - Donald B. Smith Government Campus - Building 3, 110 old route 6,

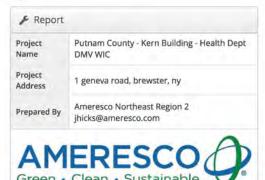
System Met	rics
Design	Design 2
Module DC Nameplate	131.4 kW
Inverter AC Nameplate	99.9 kW Load Ratio: 1.32
Annual Production	165.7 MWh
Performance Ratio	83.6%
kWh/kWp	1,261.2
Weather Dataset	TMY, 10km grid (41.45,-73.65), NREL (prospector)
Simulator Version	b23dcd9a40-f126e51428-69d73c5df3- e2a081a8ea

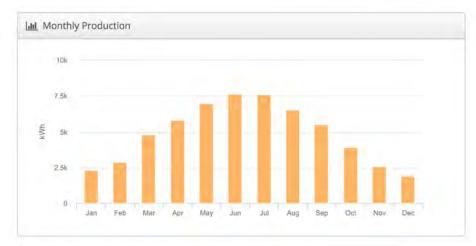

	Description		Output	% Delta
	A	Annual Global Horizontal Irradiance	1,443.5	
		POA Irradiance	1,508.4	4.5%
Irradiance		Shaded Irradiance	1,501.1	-0.5%
(kWh/m ²)		Irradiance after Reflection	1,444.1	-3.8%
		Irradiance after Soiling	1,375.3	-4.8%
		Total Collector Irradiance	1,375.3	0.0%
		Nameplate	180,754.3	
		Output at Irradiance Levels	179,393,3	-0.89
		Output at Cell Temperature Derate	177,264.7	-1.2%
		Output After Mismatch	177,000.9	-0.1%
Energy (kWh)		Optimizer Output	174,522.5	-1.4%
		Optimal DC Output	174,247.6	-0.2%
		Constrained DC Output	170,858.0	-1.9%
		Inverter Output	168,247.0	-1.5%
		Energy to Grid	165,724.0	-1.5%
Temperature	Metrics			
		Avg. Operating Ambient Temp		12.5 °C
		Avg. Operating Cell Temp		19.6 °C
Simulation M	etrics			
			Operating Hours	4692
			Solved Hours	4692

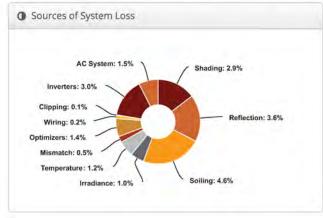

Description	Cond	ition 5	et 1										
Weather Dataset	TMY, 10km grid (41.45,-73.65), NREL (prosp.							spec	tor)				
Solar Angle Location	Mete												
Transposition Model	Perez												
Temperature Model	Sand	Sandia Model											
	Rack	Туре		а		ь			Te	mper	ature	Delta	
Temperature Model	Fixed	-3.5	66 -0.075		5	3°C							
Parameters	Flush	Mour	nt	-2.8	1	-0.0455		0°C					
	East-	West		-3.5	-3.56 -0		-0.075		3°	3°C			
	Carp	ort		-3.5	6	-(0.075	5	3°	C			
Soiling (%)	1	E	M	Α	M		ļ	1	Α	s	0	N	D
	20 20 15 1 1 1 1 1 1 1 1 15												
Irradiation Variance	3%												
Cell Temperature Spread	4° C												
Module Binning Range	-2% t	o 2%											
AC System Derate	1,509	6											
	Mod	ule			Cha	ara	cteri	izatio	n				
Module Characterizations	JKM365M-72 Jinko_JKM365M_7 (Jinkosolar) PAN							1_72_	72_RETC_20170207.pan,				
Annual Control	Devi	ce								Cha	aracte	rizatio	n
Component Characterizations	SE33	зкиs	(depre	cated) (So	lar	Edge	2)		CE	Ċ		
	P730	(Solar	Edge)							Mf	g Spec	Shee	t

☐ Compo	inents	
Component	Name	Count
Inverters	SE33.3KUS (deprecated) (SolarEdge)	3 (99.9 kW)
Strings	10 AWG (Copper)	11 (939.2 ft)
Optimizers	P730 (SolarEdge)	184 (134.3 kW)
Module	Jinkosolar, JKM365M-72 (365W)	360 (131.4 kW)

A Wiring Zoo	nes								
Description		Combiner Poles		St	ring Size	Stringing	Strategy		
Wiring Zone		12		13	3-34	Along Ra	cking		
III Field Segn	nents								
Description	Racking	Orientation	Tilt	Azimuth	Intrarow Spacing	Frame Size	Frames	Modules	Power
Field Segment 1	Fixed Tilt	Landscape (Horizontal)	50	172.02°	0.7 ft	1x1	439	360	131.4 kW

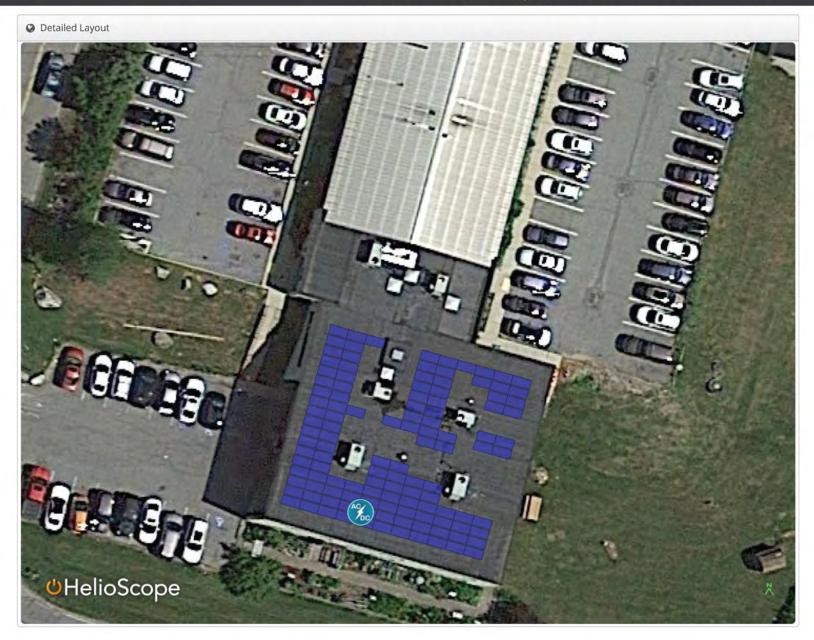



Design 1 - 400W Half Putnam County - Kern Building - Health Dept DMV WIC, 1 geneva road, brewster,


ny

Design	Design 1 - 400W Half
Module DC Nameplate	47.6 kW
Inverter AC Nameplate	43.2 kW Load Ratio: 1.10
Annual Production	58.55 MWh
Performance Ratio	81.6%
kWh/kWp	1,230.1
Weather Dataset	TMY, 10km grid (41.45,-73.65), NREL (prospector)
Simulator Version	a721496c3a-208a66d7f1-b582af6697- 77987d21ec

	Description		Output	% Delta
		Annual Global Horizontal Irradiance	1,443.5	
		POA Irradiance	1,507.2	4.4%
irradiance		Shaded Irradiance	1,462.8	-2.9%
(kWh/m²)		Irradiance after Reflection	1,409.8	-3.6%
		Irradiance after Soiling	1,344.7	-4.6%
		Total Collector Irradiance	1,344.7	0.0%
		Nameplate	64,059.0	
		Output at Irradiance Levels	63,387.6	-1.0%
		Output at Cell Temperature Derate	62,616.2	-1.2%
		Output After Mismatch	62,326.5	-0.5%
Energy (kWh)		Optimizer Output	61,453.7	-1.4%
(KAA11)		Optimal DC Output	61,311,5	-0.2%
		Constrained DC Output	61,280.5	-0.1%
		Inverter Output	59,442.0	-3.0%
		Energy to Grid	58,550.4	-1.5%
Temperature	Metrics			
		Avg. Operating Ambient Temp		12.5 °C
		Avg. Operating Cell Temp		19.4 °C
Simulation M	etrics			
		0	perating Hours	4692
			Solved Hours	4692



Description	Cond	ition Se	et 1											
Weather Dataset	TMY,	10km g	grid (4°	,45,-73	3.65)	, N	REL	(pro	speci	tor)				
Solar Angle Location	Meter	o Lat/Li	ng											
Transposition Model	Perez	Model	p											
Temperature Model	Sandi	a Mod	el											
	Rack	Type		а		b			T	emp	ere	iture	Delta	
Thomas and a shall	Fixed	Tilt		-3,56	i	-0	.075	5	3	°C				
Temperature Model Parameters	Flush	Moun	t	-2,81		-0	.045	55	0	°C				
	East-	West		-3.56		-0	.075	3	3	°C				
	Carp	ort		-3.56	,	-0	.075	5	3	°C				
Soiling (%)	j	E	M	A	M		1	1	A	S		0	N	D
	20	20	15	1	1		1	1	1	1		1	1	15
Irradiation Variance	3%													
Cell Temperature Spread	4° C													
Module Binning Range	-2% to	2%												
AC System Derate	1.50%	6												
Module Characterizations	Modi	ile			B	7.17.7	ade	d	Char	acte	riza	ation		
Mindre Characterizations	JKM4 Solar	00M-7	2HL-V	(Jinko		olso abs			Spec				, PAN	
Lance of the same	Devic	e			1	Uplo	oade	ed B	у	CI	nai	racter	ization	1
Component Characterizations	SE43	.2K (So	larEdg	e)	3	Fols	om	Lab	s	Sp	bec	She	et	
-1131041111100717113	P850	(Solari	Edgel		1	Fols	om	Lab	15	M	fo	Spec	Sheet	

△ Compo	nents	
Component	Name	Count
Inverters	SE43.2K (SolarEdge)	1 (43.2 kW)
Strings	10 AWG (Copper)	7 (680.3 ft)
Optimizers	P850 (SolarEdge)	63 (53.6 kW)
Module	Jinko Solar, JKM400M-72HL-V (400W)	119 (47.6 kW)

Miring Z	ones									
Description		Combiner Pole	es		String Size	2	Stringing S	trategy		
Wiring Zone		12			7-18		Along Rack	ing		
III Field Seg	gments									
Description	Racking	Orientation	Tilt	Azimuth		Intrarow Spacing	Frame Size	Frames	Modules	Power
Field Segment 3	Fixed Tilt	Landscape (Horizontal)	5°	195.59235	609135771°	0.4 ft	1x1	133	119	47.6 kW

ECM 19: AHU Replacements

Putnam County, NY		
Energy and Demand Savings Summary	.X	
Measure ID:	19	
Measure Name:	AHU Replacements	
Measure Location:		
Engineers:		

Site Name:		Golf	Gov2	Gov3	KoehlerSr	Fam1808	Summary
Item	Units	Savings	Savings	Savings	Savings	Savings	
Electricity							
Energy On-Peak	kWh	11,429	5,966	5,965	6,388	21,781	51,528
Energy Off-Peak	kWh	0	0	0	0	0	0
Energy Total	kWh	11,429	5,966	5,965	6,388	21,781	51,528
Demand On-Peak, Monthly	kW	7.8	8.6	8.5	4.9	15.0	44.8
Demand On-Peak, Annual	kW	31.2	34.2	34.2	19.5	60.2	179.3
Demand Off-Peak, Monthly	kW						
Demand Off-Peak, Annual	ΚW						
Fossil Fuel							
Natural Gas (NG)	CCF						
Liquid Propane Gas (LPG)	Gallons						
Steam	MIbs						
Fuel Oil, #2	Gallons						
Fuel Oil, #4	Gallons						
Fuel Oil, #6	Gallons						
Solar Value Stack	S						

Putnam County, NY
Putnam National Golf Club - Clubhouse - AHU-1, 2
AHU Replacements

TMY-3 Weat	ther Data for	TMY-3 Weather Data for Danbury, CT	н					Existing									Proposed			Savings	
Amb. Temp. Ave Temp. Bin deg, F. deg, F.	Ave Temp deg. F	M.C.W.B.	M C Enthalpy Btd/lbma		01-08 Hours (09-16 Hours [7-24 Hours	17-24 Hours	Total Bin Hours	Oce On- Peak His.	UnOce On- Peak Hrs.	Occ Off- Peak His	UnOcc Off- Peak His	Occ Heat Load (MBH)	UnOce. Heat Load (MBH)	On-Peak Electric Cooling Demand (kW)	Peak Electric Cooling Consump (kWh)	Off-Peak Electric Cooling Consump (kWh)	On-Peak Electric Cooling Demand (kW)	Peak Electric Cooling Consump (kWh)	Off-Peak Electric Cooling Consump (kWh)	Peak Electric Cooling Savings (kWh)	Off-Peak Electric Cooling Savings (KWh)
Y	B	J	0	ы	ď	9	Н	-	I	×	- 1	W	Z	0	d	0	R	S	T.	D	٨
Cooling																					
10510.110	107.5	0.0	0.0	0	0	0	0	0	0	0	0	624	477	62	0	0	90	0	0	0	Q
100 to 105	102.5	0.0	0.0	0	0	0	0	O.	0	0	0	561	429	36	0	0	45	0	0	0	0
95 to 100	97.5	0.0	0.0	0	0	0	0	0	-0	0	.0	499	381	- 80	0	-0	40	0	0	-0-	0
S6 01 06	92.5	76.2	0.0	0	17	c	16	1.0	10	0	0	437.	334	44	732	0	35	290	0	142	0.
85 to 90	87.5	73.2	0.0	0	-08	.[3:	93	47	47	0	.0	374	286	37	3,070	0	30	2,476	0	594	0
80 to 85	82.5	5'69	0.0	00	167	99	225	113	113	0	0	312	238	31	6,190	0	25	4,992	0	1,198	0
75 to 80	77.5	65,3	0.0	35	216	108	.359	081	081	0	0	249	161	25	106'1	. 0	20	6,372	0	1,529	0
70 to 75	72.5	62.4	0.0	83	267	174	524	262	262	0	0	187	143.	16	8,650	0	15	6,976	0	1,674	0
65 to 70	57.9	59.5	0.0	221	316	261	798	366	399	0	0	125	56	12	8,782	0	0.1	7,082	0	1,700	0
60 to 65	62.5	54.9	0.0	279	289	344	912	456	456	0	0	62	- 81	9	5,018	0	- 5	4,047	0	971	0.
				0.000	0000	0.00 6	094.8	A 38H	4.390	o	×				30 343	č		30 615	c	21.010	č

elf Ref.	Cell Ref. Comment
A-H	TMY-3 Weather Data for Danbury, CT
1-1	Occupied hours as per the RFP data
W	Occupied Cooling loads (MBH)
Z	Unoccupied Cooling loads (MBH)
0	=[col M]x1,000 = 3413 + (P44 = 3413)
Ъ	= $([col M]x[col \Gamma] + [col N]x[col \Gamma])x[col \Gamma])x(000 + 3.413 + (P44 + 3.413))$
O	= ([ool M]x[col K] + [col N]x[col L])x 1,000 = 3,413 + (P44 = 3,413)
R	= $[col M] \times 1,000 = 3413 + (P45 = 3.413)$
S)	= $([col M]x[col 1] + [col N]x[col 1])x[col 1])x(000 + 3,413 + (045 + 3,413))$
L	$= ([col M] \times [col K] + [col N] \times [col L]) \times 1,000 + 3,413 + (045 + 3,413)$
Ω	[col P] - [col S]
۸	= [col Q] - [col T]

Assumptions:	Value	Unit	CELL	Description
			REF	
Occupied Area	13,035	SF	P43	
Existing Cooling Efficiency	0.01	EER	P44	Existing Worthington units
Proposed Cooling Efficiency	12.4	EER	P45	Based on Manufacturer's Specs
Affected Cooling Capacity	30.0	Ton	91-d	
Fotal Cooling Capacity	0.98	Ton	P47	

Page 2 of 7

Putnam County, NY
Putnam National Golf Club - Clubhouse - AHU-5
AHU Replacements

MCWB Enthalpy deg. F Btu/lbma deg. F Btu/lbma C D D 00 00 00 000 000 000 000 000 000			4	Existing									Proposed			Suvings	
B C D	01-08 Hours (09-16 Hours 17-24 Hours	urs. 17-24 Hours	Total Bin Hours	Oce On- Peak Hrs.	UnOcc On- Penk Hrs.	Oce Off- 1	UnOcc Off- Peak Hrs.	Occ Heat Load (MBH)	UnOce Heat Load (MBH)	On-Peak Electric Cooling Demand (kW)	Peak Electric Cooling Consump (kWh)	Off-Peak Electric Cooling Consump. (kWh)	On-Peak Electric Cooling Demand (kW)	Peak Electric Cooling Consump (kWh)	Off-Peak Electric Cooling Consump (kWh)	Peak Electric Cooling Savings (kWh)	Off-Peak Electric Cooling Savings (KWh)
10 107.5 0.0 0.0 05 102.5 0.0 0.0 00 97.5 0.0 0.0 85 92.5 76.2 0.0 80 87.5 73.2 0.0 15 82.5 69.5 0.0 10 77.5 65.3 0.0 15 72.5 62.4 0.0	B 3	9	В	-	1	×	- 1	W	N	0	Ь	ō	R	S	T	п	٨
107.5 0.0 0.0 102.5 0.0 0.0 97.5 0.0 0.0 92.5 76.2 0.0 87.5 73.2 0.0 82.5 69.5 0.0 77.5 65.3 0.0 72.5 62.4 0.0																	
(02.5 0.0 0.0 97.5 0.0 0.0 92.5 76.2 0.0 87.5 73.2 0.0 82.5 89.5 0.0 77.5 65.3 0.0 72.5 62.4 0.0	0 0	-0	0	Ω	0	0	0	156	611	.91	0	0	LO	0	0	0	O
97.5 0.0 0.0 92.5 76.2 0.0 87.5 73.2 0.0 82.5 69.5 0.0 77.5 65.3 0.0	0 0	0	0	0	0	0	0	140	107	1.4	0	0	6.	0	0	0	0
92,5 76,2 0.0 87,5 73,2 0.0 82,5 69,5 0.0 77,5 65,3 0.0 72,5 62,4 0.0	0 0	0	0	0	-0-	.0	0.	125	56	12	0	- 0	8	- 0	·0·	-0-	0
87.5 73.2 0.0 82.5 69.5 0.0 77.5 65.3 0.0 72.5 62.4 0.0	0 17	2	-61	1.0	10	0	0	601	83	11	183	-0	1.	117	0	99	0
82.5 69.5 0.0 77.5 65.3 0.0 72.5 62.4 0.0	08 0	-13:	93	47	47	0	ū	46	7.2	9	768	0	9	492	0	376	0
77.5 65.3 0.0 72.5 62.4 0.0	167	50	225	113	113	0	.0.	78	09	8	1,548	0	5	566	0	556	0
72.5 62.4 0.0	35 216	108	359	180	180	.0	0	7.9	48	.0	1,975	. 0	4	1,266	0	200	0
	83 267	174	524	262	262	0	0	47	36	5	2,162	0	3	1,386	0	176	0
651070 67.5 59.5 0.0 22	221 316	261	798	399	399	0	0	31	24	6	2,195	0	2	1,407	0	788	0
604065 62.5 54.9 0.0 274	279 289	344	-912	456	456	0	0	16	12	P	1,255	0	1	804	0 —	450	0
2,92	2,920 2,920	2,920	8,760	4,380	4,380	0	ď				10,086	0		6,465	0	3,621	0

Comment	Assumptions:	Val
TMY-3 Weather Data for Danbury, CT		
Occupied hours as per the RFP data	Occupied Area	13
Occupied Cooling loads (MBH)	Existing Cooling Efficiency	
Unoccupied Cooling loads (MBH)	Proposed Cooling Efficiency	
= [col M] x 1,000 = 3413 + (P44 = 3413)	Affected Cooling Capacity	
= ([col M] x [col [T] + [col N] x [col J]) x 1,000 + 3,413 + (P44 + 3,413)	Total Cooling Capacity	
[[col M] x [col K] * [col N] x [col L]) x 1,000 * 3,413 * (P44 * 3,413)		
$= [col M] \times 1,000 = 3413 + (P45 = 3.413)$		-
= ([col M]x[col 1] + [col N]x[col J])x1,000 = 3,413 = (P45 + 3,413)		
=([col M] x [col K] + [col N] x [col L]) x 1,000 + 3,413 + (P45 + 3,413)		
# [col P] - [tol S]		
= [col Q] - [col T]		

Decupied Area 13,035 SF P43 Existing units Sussing Cooling Efficiency 10.0 EER P44 Existing units Proposed Cooling Efficiency 15.6 EER P45 Based on Manufacturer's Spees Affected Cooling Capacity 7.5 Ton P46 Pro Shop Only Goal Cooling Capacity 80.0 Ton P46 Pro Shop Only	Assumptions:	Value	Unit	CELL	Description
13,035 SF 13,035 SF 10.0 EER 10.0 EE				REF	
75 10.0 EER 75 15.6 EER 7.5 Ton 86.0 Ton	Occupied Area	13,035	SF	P43	
EER Ton Ton	Existing Cooling Efficiency	0.01	BER	P44	Existing units
Ton	Proposed Cooling Efficiency	15.6	EER	P45	Based on Manufacturer's Specs
Ton	Affected Cooling Capacity	7.5	Ton	9Fd	Pro Shop Only
	Fotal Cooling Capacity	0.98	Ton	P47	

Page 3 of 7

Putnam County, NY Donald B. Smith Government Campus - Building 2 AHU Replacements

TMY-3 Weat.	her Data for	FMY-3 Weather Data for Danbury, C1	-					Existing									Proposed			Savings	
Amb Temp Ave Temp Bin deg. F	Ave Temp deg. F	MCWB	M C Enthalpy Btw/bms		01-08 Hours (09-16 Hours 17-24 Hours	17-24 Hours	Total Bin Hours	Oce On- Peak Hrs	UnOce On- Peak Hrs.	Occ Off- Peak His	UnOcc Off: Peak Hrs	Occ Heat Load (MBH)	UnOce. Heat Load (MBH)	On-Peak Electric Cooling Demand (kW)	Peak Electric Cooling Consump (kWh)	Off-Peak Electric Cooling Consump (kWh)	On-Peak Electric Cooling Demand (kW)	Peak Electric Cooling Consump (kWh)	Off-Peak Electric Cooling Consump (kWh)	Peak Electric Cooling Savings (kWh)	Off-Peak Electric Cooling Savings (KWh)
Ψ.	В	0	O	3	В	9	Н	-	1	Ж	- 1	M	N	0	Ь	0	R	S	_ T _	n	٨
Cooling																					
105 to 110	107.5	0.0	0.0	0	0	-0	0	Ø	0	0	0	1,274	777	127	0	0	911	0	0	0	Q
100 to 105	102.5	0.0	0.0	0	0	0	0	0	0	0	0	1,146	669	115	0	0	104	0	0	0	0
95 to 100	97.5	0.0	0.0	-0	0	0	-0	0	0	.0.	0	610'1	621	102	0	-0	93	0	-0.	-0-	0
S6 91 06	92.5	76.2	0.0	0	17	2	19	. 5	14	0	0	892	544	- 68	061,1	0	18	1,082	0	108	0.
85 to 90	87.5	73.2	0.0	0	- 08	(3)	93	22	3.6	0	.0	764	466	92	4,994	0	69	4,540	0	454	0
80 to 85	82.5	5'69	0.0	80	167	50	225	54	(2)	0	0.	637	388	.64	10.069	0	58	9,153	0	915	0
75 to 80	77.5	65,3	0.0	35	216	108	359	85	274	0.	0	509	311	51	12,852	0	46	11,684	0	1,168	0
70 to 75	72.5	62.4	0.0	83	267	174	524	125	399	0	0	382	233	38	14,069	0	35	12,790	0	1,279	0
65 to 70	67.5	59.5	0.0	221	316	261	798	190	809	0	0	255	155	. 25	14,284	0	23	12,986	0	1,299	0
60 to 65	62.5	54.9	0.0	279	289	344	-912	217	695	0	0	127	78	13	8,162	0	12	7,420	0	742	0.
				2 920	0.00	0.00 €	X 760	2.086	6.674	o	W				165,631	c		50,655	c	200 5	o

ef.	Comment	Assumptions:
H	TMY-3 Weather Data for Danbury, CT	
1	Occupied hours as per the RFP data	Occupied Area
_	Occupied Cooling loads (MBH)	Existing Cooling Efficiency
	Unocoupied Cooling Joads (MBH)	Proposed Cooling Efficiency
	= [col M] x 1,000 = 3413 + (P44 = 3413)	Affected Cooling Capacity
	- ([col M] x [col I] + [col N] x [col J]) x 1,000 + 3,413 + (P44 + 3.413)	Total Cooling Capacity
	= ([col M] x [col K] + [col N] x [col L] x 1,000 + 3,413 + (P44 + 3,413)	
	$= [\operatorname{col} \mathbf{M}] \times 1,000 = 3413 + (P45 = 3413) $	
	= $([\cos M] \times [\cos H] + [\cos N] \times [\cos H]) \times ([\cos H]) \times ([\cos H]) \times ([\cos H])$	
	$= ([col M] \times [col K] + [col M] \times [col L]) \times 1,000 + 3,413 + (P45 + 3,413)$	
	= [col P] - [col S]	
	= [col Q] . [col T]	

Assumptions:	Value	Unit	CELL	Description
			REF	
Occupied Area	15,900	SF	P43	Area of Ballroom
Existing Cooling Efficiency	0.01	EER	P44	Existing Worthington units
Proposed Cooling Efficiency	11.0	EER	P45	Based on Manufacturer's Specs
Affected Cooling Capacity	20.0	Ton	9Hd	
Total Cooling Capacity	53.5	Ton	P47	

Page 4 of 7

Putnam County, NY Donald B. Smith Government Campus - Building 3 AHU Replacements

Amb Temp Ave Temp N Ban deg, F deg, F Cooling 105 to 110	THE PARTY OF THE P						Existing									Proposed			Savings	
	M.C.W.B.	M.C Enthalpy Btu/lbma	01-08 Mours	01-08 Hours (09-16 Hours) 17-24 Hours	17-24 Hours	Total Bin Hours	Occ On- Peak Hrs.	UnOcc On- Peak lifts.	Occ Off- Peak His	UnOcc Off- Peak Hrs.	Occ Heat Load (MBH)	UnOcc. Heat Load (MBH)	On-Peak Electric Cooling Demand (kW)	Peak Electric Cooling Consump (kWh)	Off-Peak Electric Cooling Consump (kWh)	On-Peak Electric Cooling Demand (kW)	Peak Electric Cooling Consump (kWh)	Off-Peak Electric Cooling Consump (kWh)	Peak Electric Cooling Savings (kWh)	Off-Peak Electric Cooling Savings (KWh)
	C	0	3	В	9	Н	-	1	×	- 1	M	N	0	d	ò	R	S	_ T _	n	٨
	0.0	0.0	0	0	-0	0	O	0	0	0	1,273	777	127	0	0	116	0	0	0	Q
100 to 105 102.5	0.0	0.0	0	0	0	0	0	0	0	0	1,146	669	115	0	0	104	0	0	0	0
95 to 100 97.5	0.0	0.0	-0	0	0	0	0	0	.0.	0	1,019	621	102	0	-0	93	0	·0.	-0-	0
90 10 95 92.5	76.2	0.0	0	17	2	-61	.5	14	0	0	168	544	- 68	1,190	0	18	1,082	0	108	0.
85 to 90 87.5	73.2	0.0	0	80	(3:	93	22	3.0	0	O.	764	466	76	4,993	0	69	4,539	0	454	0
80 to 85 82.5	5'69	0.0	00	167	50	225	54	(2)	.0	0	637	388	64	10.067	0	58	9,152	0	915	0
75 to 80 77.5	65,3	0.0	35	216	108	359	8.5	274	.0	0	509	311	5.1	12,850	0	46	11,682	0	1,168	0
70 to 75 72.5	62.4	0.0	83	792	174	524	125	399	0	0	382	233	38	14,067	0	35	12,788	0	1,279	0
65 to 70 67.5	59.5	0.0	221	316	261	798	190	809	0	0	255	155	.25	14,282	0	23	12,983	0	1,298	0
60 to 65 62.5	54.9	0.0	279	289	344	912	217	695	0	0	127	78	13	8,161	0	12	7,419	0	742	0.
			2,920	2,920	2,920	8,760	2,086	6,674	0	O				65,610	0		59,645	0	5,965	0

	Сопшен	Assumptions:
	TMY-3 Weather Data for Danbury, CT	and the same of the same of
1	Occupied hours as per the RFP data	Occupied Area
	Occupied Cooling loads (MBH)	Existing Cooling Efficiency
	Unoccupied Cooling loads (MBH)	Proposed Cooling Efficiency
	= [col M.] x 1,000 = 3413 + (P44 = 3413)	Affected Cooling Capacity
	= ([col M] x [col f] + [col N] x [col f]) x 1,000 + 3,413 + (P44 + 3,413)	Total Cooling Capacity
	([col M] x [col K] + [col N] x [col L] x 1,000 = 3,413 \cdot (P44 = 3,413)	
	$= [\cos[M] \times 1,000 = 3413 + [P45 = 3.413.)$	
	= $\{[col M]x[col 1] + [col N]x[col 1]\}x(000 + 3.413 + (P45 + 3.413)$	
	$= ([col M] \times [col K] + [col N] \times [col L]) \times ([col L]) \times (000 + 3.413)$	
	# [cot P] - [cot S]	
	= [col Q]-[col T]	

Assumptions:	Value	Unit	CELL	Description
			REF	
Occupied Area	20,140	SF	P43	Area of Ballroom
Existing Cooling Efficiency	0.01	EER	P44	Existing Worthington units
Proposed Cooling Efficiency	0.11	EER	P45	Based on Manufacturer's Specs
Affected Cooling Capacity	45.0	Ton	9Hd	
Fotal Cooling Capacity	0.10	Ton	P47	

Page 5 of 7

Putnam County, NY William Koehler Senior Center AHU Replacements

FMY-3 Weather Data for Danbury, CT	her Data for	e Danbury, C	1					Existing									Proposed			Savings	
Amb. Temp Ave Temp Bin deg. F deg. F	Ave Temp deg. F	M.C.W.B.	M C Enthalpy Btw/bma		09-16 Hours.	01-08 Hours (09-16 Hours 17-24 Hours	Total Bin Hours	Oce On- Peak Hrs	UnOce On- Peak Hrs.	Oce Off- Peak His.	UnOcc Off- Peak Hrs.	Occ. Heat. Load (MBH)	UnOce. Heat Load (MBH)	On-Peak Electric Cooling Demand (kW)	Peak Electric Cooling Consump (kWh)	Off-Peak Electric Cooling Consump. (kWh)	On-Peak Electric Cooling Demand (kW)	Peak Electric Cooling Consump (kWh)	Off-Peak Electric Cooling Consump (kWh)	Peak Electric Cooling Savings (kWh)	Off-Peak Electric Cooling Savings (KWh)
Y	B	3	0	3	F	9	Н	-	- F	Х	- 1	W	Z	0	Ь	ō	R	S		n	٨
Cooling																					
105 to 110	107.5	0.0	0.0	0	0	-0	0	0	0	0	0	1,130	864	94	0	0	-84	0	0	0	Q
100 to 105	102.5	0.0	0.0	0	0	0	0	0	0	0	0	1,017	877	85	0	0	92	0	0	0	0
95 to 100	97.5	0.0	.0:0	-0	0	0	-0	0	-0	.0.	.0	904	169	75	0	- 0	29	0	-0.	-0-	0
S6 01 06	92.5	76.2	0.0	0	17	2	- 61	82	TI.	0	0	162	605	.99	680'1	0	- 65	973	0	116	0.
85 to 90	87.5	73.2	0.0	0	08	13:	93	42	51	0	.0	819	-818	56	4,570	0	90	4,084	0	486	0
80 to 85	82.5	5'69	0.0	80	167	90	225	100	125	0	0.	565	432	.47.	9,213	0	42	8,233	0.	086	0
75 to 80	77.5	65,3	0.0	35	216	108	359	091	661	0	0	452	346	38	11,760	. 0	34	10,509	0	1,251	0
70 to 75	72.5	62.4	0.0	83	267	174	524	234	290	0	0	339	259	28	12,874	0	25	11,504	0	0,370	0
65 to 70	67.5	59.5	0.0	221	316	261	798	356	-442	0	0	226	173	61	13,071	0	.21	11,680	0	1,390	0
60 to 65	62.5	54.9	0.0	279	289	344	-912	407	505	0	0	113	86	6	7,469	0	8	6,674	0	795	0.
				2 920	0.00	0.650	8.760	1011	4.840	0	V.				So rate.	Ċ		53,658	c	388.9	ŭ

Assumptions:	Value	Unit	CELL	Description
			REF	
Occupied Area	17,976	SF	P43	Area of Ballroom
Existing Cooling Efficiency	12.0	EER	P44	Existing Worthington units.
Proposed Cooling Efficiency	13,4	EER	P45	Based on Manufacturer's Specs
Affected Cooling Capacity	27.5	Ton	91d	
Total Cooling Capacity	37.5	Ton	P47	

Cell Ref.	Comment
H-H	TMY-3 Weather Data for Danbury, CT
171	Occupied hours as per the RFP data
W	Occupied Cooling loads (MBH)
Z	Unoccupied Cooling loads (MBH)
0	= [col M] x 1,000 = 3413 + (P44 = 3.413)
Ъ	= ([col M] x [col f] + [col N] x [col J] x 1,000 + 3,413 + (P44 + 3,413)
O	= ([col M]x[col K] + [col N]x[col L]3x1,000 = 3,413 + (P44 = 3,413)
R	$= [\operatorname{col} \mathbf{M}] \times 1,000 - 3413 + (P45 + 3413)$
(A)	= $(\lceil col M \rceil \times \lceil col 1 \rfloor + \lceil col M \rceil \times \lceil col J \rceil) \times 1,000 + 3,413 + (P45 + 3,413)$
T	=([col M]x[col K]+[col N]x[col L])x1,000+3,413 \(\circ (P45+3,413)\)
n	= [col P] - [col S]
^	= [col Q] - [col T]

Page 6 of 7

Putnam County, NY
Putnam Family & Community Services - 1808
AHU Replacements

	her Datar for	TMY-3 Weather Data for Danbury, CT	h					Existing									Proposed			Savings	
Amb Temp Ave Temp Bin deg. F deg. F	Ave Temp deg. F	M.C.W.B.	M C Enthalpy Btu/lbms		01-08 Hours (09-16 Hours, 17-24 Hours	17-24 Hours	Total Bin Hours	Oce On- Peak Hrs.	UnOcc On- Penk Hrs.	Occ Off. 1	UnOcc Off- Peak His	Occ. Heat. Loud (MBH)	UnOce. Heat Load (MBH)	On-Peak Electric Cooling Demand (kW)	Peak Electric Cooling Consump (kWh)	Off-Peak Electric Cooling Consump (KWh)	On-Peak Electric Cooling Demand (kW)	Peak Electric Cooling Consump. (kWh)	Off-Peak Electric Cooling Consump (kWh)	Peak Electric Cooling Savings (kWh)	Off-Peak Electric Cooling Savings (KWh)
¥	В	0	0	3	B	9	Н	-	· · · · · ·	×	- T	M	Z	0	Ь	ò	R	S	T.	n	٨
Cooling									- 7												
011 01 501	107.5	0.0	0.0	0	0	-0	0	Ø	0	0	0	126	687	- 64	0	0	62	0	0	0	Q .
100 to 105	102.5	0.0	0.0	0	0	0	0	0	0	0	0	874	819	87	0	0	56	0	0	0	0
95 to 100	97.5	0.0	0.0	0	0	0	0	0	0	.0.	0	111	550	78	0	-0	- 99	0	:0:	-0-	0
56 01 06	92.5	76.2	0.0	0	17	2	- 61	6	10	0	0	089	481	89	1,101	0	44	902	0	305	0.
85 to 90	87.5	73.2	0.0	0	- 80	(3)	93	46	47	0	.0	583	412	58	4,618	0	37	2,960	0	1,658	0
80 to 85	82.5	5.69	0.0	80	167	50	225	111	114	0	0.	486	344	-49	9,310	0	31	5,968	0	3,342	0
75 to 80	77.5	65.3	0.0	35	216	108	359	177	182	0	0	389	275	.39	11,884	0	25	7,618	0	4,266	0
70 to 75	72.5	62.4	0.0	83	267	174	524	259	265	0	0	291	206	29	13,009	0	61	8,339	0	4,670	0
65 to 70	67.5	59.5	0.0	221	316	261	-864	394	404	0	0	161	137	16	13,208	0	(2)	8,466	0	4,741	0
60 to 65	62.5	54.9	0.0	279	289	344	912	451	461	0	0	26	69	10	7,547	0	9	4,838	- 0	2,709	0.
				2,920	2,920	2,920	8,760	4,328	4,432	0	O				60,676	0		38,895	0	21,781	0

ell Ref.	Cell Ref. Comment
H-H	TMY-3 Weather Data for Danbury, CT
171	Occupied hours as per the RFP data
M	Occupied Cooling loads (MBH)
Z	Unoccupied Cooling loads (MBH)
0	=[col M]x1,000 + 3413 + (P44 + 3413)
Ъ	= ([col M]x[col T] + [col N]x[col T])x[col T])x1,000 + 3,413 + (P44 + 3.413)
O	= ([col M] x [col K] = [col N] x [col L]) x 1,000 = 3,413 ~ (P44 = 3,413)
R	= $[col M] \times 1,000 = 3413 + (P45 = 3.413)$
S)	= $([col M] \times [col 1] + [col N] \times [col J]) \times 1,000 = 3,413 = (P45 = 3,413)$
T	$= ([col M] \times [col K] + [col N] \times [col L]) \times 1,000 + 3,413 + (P45 + 3,413)$
n	= [col P]-[col S]
٨	= [col Q] - [col T]

Assumptions:	Value	Unit	CELL	Description
			REF	
Occupied Area	11,333	SF	P43	Area of Ballroom
existing Cooling Efficiency	0.01	EER	P44	Existing Worthington units
Proposed Cooling Efficiency	15.6	EER	P45	Based on Manufacturer's Specs
Affected Cooling Capacity	45.5	Ton	91-d	
Fotal Cooling Capacity	45.5	Ton	P47	

Page 7 of 7

ECM 20: Plug Load Controllers

Putnam County, NV		
Energy and Demand Savings Sum	Summary	
Measure ID:	20	
Measure Name:	Plug Load Controllers	
Measure Location:		
Engineers:		

Site Name:		Jail	Court	Bruen	CourtIS12	Main	EOC	GovI	Gov2	Gov3	Kera	Fam1808	Hwyl	Summary
ltem -	Units	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	Savings	
Electricity	100													
Energy On-Peak	KWE	1.958	5,035	1,558	1.558	510	1.958	- 0	1,780	2,245	1,896	851	1,238	20,598
Energy Off-Peak	kWh													0
Energy Total	kWh	1,958	5,035	1,358	1,558	319	1,958	.0	1.780	2,245	1,896	851	1,238	20,598
Demand On-Peak, Monthly	kW													0:0
Demand On-Peak, Annual	kW				1		1	1		100				0.0
Demand Off-Peak, Monthly	kW													0.0
Demand Off-Peak, Annual	kW													0.0
Fossil Fuel					Χ.								1	0
Natural Gas (NG)	CCF													.0.
Liquid Propane Gas (LPG)	Gallons													U
Steam	Mfbs													0
Fuel Oil, #2	Gallons													0
Fuel Oit, #4	Gallons						11							.0
Fuel Oil, #6	Gallons													0
Solar Value Stack	\$													0
Water														0.
Water Savings	kGalfons													.0.
Sewer	1 1 2 2													.0.
Sewer Savings	kGallons													100

Project Total	kWh Rate	0.08		Totals
# of Berts	62	21	18	101
Total Annual Net kWh Savings	7,331	8,303	4,964	20,598
Total Annual Net \$ Savings	\$586	\$664	\$397	\$1,648
Device Type:	Med. Printer	Lg. Copier (110V)	Lg Coffee	
Watts:	18	60	42	
Baseline Hours ON:	8760	8760	8760	
Sheriff's Department/Correctional Facility				
# of Berts	5			
Scheduled ON Hours (Bert)	2100		2100	
Annual Net Hours Savings	6,660	C. (C.)	6,660	
Total Annual Net kWh Savings	599		1,000,00	- A. C. C.
Total Annual Net \$ Savings	\$48			200
Annual Net \$ Savings - Device	\$9.59	\$31.97	\$0.00	
New Putnam County Courthouse				
	1 15	6	3	24
# of Berts	15	the second secon		
# of Berts Scheduled ON Hours (Bert)	2100	2100	2100	
# of Berts Scheduled ON Hours (Bert) Annual Net Hours Savings	2100 6,660	2100 6,660	2100 6,660	
# of Berts Scheduled ON Hours (Bert) Annual Net Hours Savings Total Annual Net kWh Savings	2100	2100 6,660 2,398	2100 6,660 839	5,038
# of Berts Scheduled ON Hours (Bert) Annual Net Hours Savings Total Annual Net kWh Savings Total Annual Net \$ Savings	2100 6,660 1,798	2100 6,660 2,398 \$192	2100 6,660 839 \$67	5,035 \$403
# of Berts Scheduled ON Hours (Bert) Annual Net Hours Savings Total Annual Net kWh Savings Total Annual Net \$ Savings Annual Net \$ Savings - Device David D. Bruen County Office Building	2100 6,660 1,798 \$144	2100 6,660 2,398 \$192	2100 6,660 839 \$67	5,035 \$403
# of Berts Scheduled ON Hours (Bert) Annual Net Hours Savings Total Annual Net kWh Savings Total Annual Net \$ Savings Annual Net \$ Savings - Device David D. Bruen County Office Building # of Berts	2100 6,660 1,798 \$144 \$9.59	2100 6,660 2,398 \$192 \$31.97	2100 6,660 839 \$67 \$0.00	5,035 \$403
# of Berts Scheduled ON Hours (Bert) Annual Net Hours Savings Total Annual Net kWh Savings Total Annual Net \$ Savings Annual Net \$ Savings - Device David D. Bruen County Office Building # of Berts Scheduled ON Hours (Bert)	2100 6,660 1,798 \$144 \$9.59	2100 6,660 2,398 \$192 \$31.97	2100 6,660 839 \$67 \$0.00	5,038 \$403
# of Berts Scheduled ON Hours (Bert) Annual Net Hours Savings Total Annual Net kWh Savings Total Annual Net \$ Savings Annual Net \$ Savings - Device David D. Bruen County Office Building # of Berts Scheduled ON Hours (Bert) Annual Net Hours Savings	2100 6,660 1,798 \$144 \$9.59 4 2100 6,660	2100 6,660 2,398 \$192 \$31.97 2 2100 6,660	2100 6,660 839 \$67 \$0.00 1 2100 6,660	5,035 \$403
# of Berts Scheduled ON Hours (Bert) Annual Net Hours Savings Total Annual Net kWh Savings Total Annual Net \$ Savings Annual Net \$ Savings - Device David D. Bruen County Office Building # of Berts Scheduled ON Hours (Bert) Annual Net Hours Savings Total Annual Net kWh Savings	2100 6,660 1,798 \$144 \$9.59 4 2100 6,660 480	2100 6,660 2,398 \$192 \$31.97 2 2100 6,660 799	2100 6,660 839 \$67 \$0.00 1 2100 6,660 280	5,035 \$403 1,558
# of Berts Scheduled ON Hours (Bert) Annual Net Hours Savings Total Annual Net kWh Savings Total Annual Net \$ Savings Annual Net \$ Savings - Device David D. Bruen County Office Building # of Berts Scheduled ON Hours (Bert) Annual Net Hours Savings Total Annual Net \$ Savings	2100 6,660 1,798 \$144 \$9.59 4 2100 6,660 480 \$38	2100 6,660 2,398 \$192 \$31.97 2 2100 6,660 799 \$64	2100 6,660 839 \$67 \$0.00 1 2100 6,660 280 \$22	5,038 \$403 1,558 \$128
# of Berts Scheduled ON Hours (Bert) Annual Net Hours Savings Total Annual Net kWh Savings Total Annual Net \$ Savings Annual Net \$ Savings - Device David D. Bruen County Office Building # of Berts Scheduled ON Hours (Bert) Annual Net Hours Savings	2100 6,660 1,798 \$144 \$9.59 4 2100 6,660 480	2100 6,660 2,398 \$192 \$31.97 2 2100 6,660 799 \$64	2100 6,660 839 \$67 \$0.00 1 2100 6,660 280 \$22	5,035 \$403 7 1,558 \$125
# of Berts Scheduled ON Hours (Bert) Annual Net Hours Savings Total Annual Net kWh Savings Total Annual Net \$ Savings Annual Net \$ Savings - Device David D. Bruen County Office Building # of Berts Scheduled ON Hours (Bert) Annual Net Hours Savings Total Annual Net \$ Savings Total Annual Net \$ Savings	2100 6,660 1,798 \$144 \$9.59 4 2100 6,660 480 \$38	2100 6,660 2,398 \$192 \$31.97 2 2100 6,660 799 \$64	2100 6,660 839 \$67 \$0.00 1 2100 6,660 280 \$22	5,035 \$403 7 1,558 \$125

Scheduled ON Hours (Bert)	2100	2100	2100	
Annual Net Hours Savings	6,660	6,660	6,660	
Total Annual Net kWh Savings	480	799	280	1,558
Total Annual Net \$ Savings	\$38	\$64	\$22	\$125
Annual Net \$ Savings - Device	\$9.59	\$31.97	\$0.00	
121 Main Street				
# of Berts	2	0	1	3
Scheduled ON Hours (Bert)	2100	2100	2100	
Annual Net Hours Savings	6,660	6,660	6,660	
Total Annual Net kWh Savings	240	0	280	519
Total Annual Net \$ Savings	\$19	\$0	\$22	\$42
Annual Net \$ Savings - Device	\$9.59	#DIV/0!	\$0.00	
Emergency Operations Center/TOPS				
# of Berts	5	2	2	9
Scheduled ON Hours (Bert)	2100	2100	2100	
	6,660	6,660	6,660	
Annual Net Hours Savings	0,000			
Annual Net Hours Savings Total Annual Net kWh Savings	599	799	559	1,958
	A March of Street	799 \$64	559 \$45	
Total Annual Net kWh Savings	599		~~~	1,958 \$157
Total Annual Net kWh Savings Total Annual Net \$ Savings Annual Net \$ Savings - Device Donald B. Smith Government Campus - Building 2 # of Berts Scheduled ON Hours (Bert) Annual Net Hours Savings Total Annual Net \$ Savings	599 \$48 \$9.59 4 2310 6,450 464 \$37	\$64 \$31.97 2 2310 6,450 774 \$62	\$45 \$22.38 2 2310 6,450 542 \$43	
Total Annual Net kWh Savings Total Annual Net \$ Savings Annual Net \$ Savings - Device Donald B. Smith Government Campus - Building 2 # of Berts Scheduled ON Hours (Bert) Annual Net Hours Savings Total Annual Net kWh Savings	599 \$48 \$9.59 4 2310 6,450 464	\$64 \$31.97 2 2310 6,450 774	\$45 \$22.38 2 2310 6,450 542	\$157 8 1,780
Total Annual Net kWh Savings Total Annual Net \$ Savings Annual Net \$ Savings - Device Donald B. Smith Government Campus - Building 2 # of Berts Scheduled ON Hours (Bert) Annual Net Hours Savings Total Annual Net kWh Savings Total Annual Net \$ Savings Annual Net \$ Savings Annual Net \$ Savings - Device Donald B. Smith Government Campus - Building 3	599 \$48 \$9.59 4 2310 6,450 464 \$37	\$64 \$31.97 2 2310 6,450 774 \$62 \$30.96	\$45 \$22.38 2 2310 6,450 542 \$43	\$157 8 1,780 \$142
Total Annual Net kWh Savings Total Annual Net \$ Savings Annual Net \$ Savings - Device Donald B. Smith Government Campus - Building 2 # of Berts Scheduled ON Hours (Bert) Annual Net Hours Savings Total Annual Net kWh Savings Total Annual Net \$ Savings Annual Net \$ Savings - Device Donald B. Smith Government Campus - Building 3 # of Berts	599 \$48 \$9.59 4 2310 6,450 464 \$37 \$0.00	\$64 \$31.97 2 2310 6,450 774 \$62 \$30.96	\$45 \$22.38 2 2310 6,450 542 \$43 \$0.00	\$157 8 1,780 \$142
Total Annual Net kWh Savings Total Annual Net \$ Savings Annual Net \$ Savings - Device Donald B. Smith Government Campus - Building 2 # of Berts Scheduled ON Hours (Bert) Annual Net Hours Savings Total Annual Net kWh Savings Total Annual Net \$ Savings Annual Net \$ Savings - Device Donald B. Smith Government Campus - Building 3 # of Berts Scheduled ON Hours (Bert)	599 \$48 \$9.59 4 2310 6,450 464 \$37 \$0.00	\$64 \$31.97 2 2310 6,450 774 \$62 \$30.96	\$45 \$22.38 2 2310 6,450 542 \$43 \$0.00	\$157 8 1,780 \$142
Total Annual Net kWh Savings Total Annual Net \$ Savings Annual Net \$ Savings - Device Donald B. Smith Government Campus - Building 2 # of Berts Scheduled ON Hours (Bert) Annual Net Hours Savings Total Annual Net kWh Savings Total Annual Net \$ Savings Annual Net \$ Savings - Device Donald B. Smith Government Campus - Building 3 # of Berts Scheduled ON Hours (Bert) Annual Net Hours Savings	599 \$48 \$9.59 4 2310 6,450 464 \$37 \$0.00	\$64 \$31.97 2 2310 6,450 774 \$62 \$30.96	\$45 \$22.38 2 2310 6,450 542 \$43 \$0.00	\$157 8 1,780 \$142
Total Annual Net kWh Savings Total Annual Net \$ Savings Annual Net \$ Savings - Device Donald B. Smith Government Campus - Building 2 # of Berts Scheduled ON Hours (Bert) Annual Net Hours Savings Total Annual Net kWh Savings Total Annual Net \$ Savings Annual Net \$ Savings - Device Donald B. Smith Government Campus - Building 3 # of Berts Scheduled ON Hours (Bert) Annual Net Hours Savings Total Annual Net KWh Savings	599 \$48 \$9.59 4 2310 6,450 464 \$37 \$0.00 8 2310 6,450 929	\$64 \$31.97 2 2310 6,450 774 \$62 \$30.96 2 2310 6,450 774	\$45 \$22.38 2 2310 6,450 542 \$43 \$0.00 2 2310 6,450 542	\$157 8 1,780 \$142 2,245
Total Annual Net kWh Savings Total Annual Net \$ Savings Annual Net \$ Savings - Device Donald B. Smith Government Campus - Building 2 # of Berts Scheduled ON Hours (Bert) Annual Net Hours Savings Total Annual Net kWh Savings Total Annual Net \$ Savings Annual Net \$ Savings - Device Donald B. Smith Government Campus - Building 3 # of Berts Scheduled ON Hours (Bert) Annual Net Hours Savings	599 \$48 \$9.59 4 2310 6,450 464 \$37 \$0.00	\$64 \$31.97 2 2310 6,450 774 \$62 \$30.96	\$45 \$22.38 2 2310 6,450 542 \$43 \$0.00 2 2 2310 6,450	\$157 8 1,780

# of Berts	5	2	2	9
Scheduled ON Hours (Bert)	2310	2310	2310	
Annual Net Hours Savings	6,450	6,450	6,450	
Total Annual Net kWh Savings	581	774	542	1,896
Total Annual Net \$ Savings	\$46	\$62	\$43	\$152
Annual Net \$ Savings - Device	\$9.29	\$30.96	\$0.00	
Community Services - 1808	51	61	-	
# of Berts	5	0	1	6
Scheduled ON Hours (Bert)	2310	2310	2310	
Annual Net Hours Savings	6,450	6,450	6,450	
Total Annual Net kWh Savings	581	0	271	851
Total Annual Net \$ Savings	\$46	\$0	\$22	\$68
Annual Net \$ Savings - Device	\$9.29	#DIV/0!	\$21.67	
windows and a district			-	
Highway Department - Building 1 Admin				
Building 1 Admin # of Berts	5	1	1	7
Building 1 Admin # of Berts Scheduled ON Hours (Bert)	5 2310	2310	2310	7
# of Berts Scheduled ON Hours (Bert) Annual Net Hours Savings	T 100 100 100 100 100 100 100 100 100 10	1 2310 6,450	1 2310 6,450	7
Building 1 Admin # of Berts Scheduled ON Hours (Bert)	2310	3727/1177		1,238
# of Berts Scheduled ON Hours (Bert) Annual Net Hours Savings	2310 6,450	6,450	6,450	1,238 \$99

ECM 22: Chiller Replacement

Putnam County, NY	
Energy and Demand Savings Summary	
Measure ID:	22
Measure Name:	Chiller Replacement
Measure Location:	
Engineers:	

Site Name:		Court1812	Summary
Item	Units	Savings	
Electricity			
Energy On-Peak	kWh	40,000	40,000
Energy Off-Peak	kWh	0	0
Energy Total	kWh	40,000	40,000
Demand On-Peak, Monthly	kW	16.2	16.2
Demand On-Peak, Annual	kW	64.7	64.7
Demand Off-Peak, Monthly	kW		0.0
Demand Off-Peak, Annual	kW		0.0
Fossil Fuel			0
Natural Gas (NG)	Therms		0
Liquid Propane Gas (LPG)	Gallons		0
Steam	Mlbs		0
Fuel Oil, #2	Gallons		0
Fuel Oil, #4	Gallons		0
Fuel Oil, #6	Gallons		0
Miscellaneous	Misc		0
Water			0
Water Savings	kGallons		0
Sewer			0
Sewer Savings	kGallons		0

Putnam County, NY 1812 Courthouse Chiller Replacement

TMY-3 Wea	ther Data fo	TMY-3 Weather Data for Danbury, CT					a	Existing										Proposed				Savings	
Ants. Temp Bin deg. F	Ave Temp deg. F	M.C.W.B	M.C. Entralpy Btu/Ibna 01-	01-08 Hours D0-16 Hours 17-24 Hours	6 Hours 17-		Total Bin Hours	Oce On-	UnDec On- Peak Hrs	Oce Off. 1	UnDec Off- Peak Hrs.	Occ Hear Load (MBH)	UnOcc. Heat Load (MBH)	Existing Efficiency (EER)	On-Peak Etectric Cooling Demand (Peak Electric Cooling Consump, (kWb)	Off-Peak Electric Cooling Consump (RWh)	Proposed Efficiency (EER)	On-Peak Electric Cooling Demand (kW)	Peak Electric Cooling Consump. (kWh)	Off-Peak Electric Coolnig Consump (KWh)	Peak Electric Cooling Savings (kWh)	Off-Peak Electric Cooling Savings (kWb)
V	8	Э	q	Ē	4	9	H	-	7	×	2	M	z		0	d	o		2	s	1	n	٨
Cooling																							
105 to 110	107.5	0'0	9.0	.00	0	0	.0	-0	0:	c	0	1.572	1,572	10,00	157	.0	0	14,60	108	0	- 0	0'	0
100 to 105	102.5	0.0	0.0	0	0	0	c	0	0	0	0	514.1	1,415	10:00	141	.0	0	14.60	16	.0	0	0	0-
95 to 100	97.5	0.0	0.0	.0.	0	.0.	0	6	- 2	0	-0	1,258	1.258	10.00	126	1,384	.0.	14.60	98	846		436	- 0
56 of 06	92.5	76.2	0.0	0	23.	7.	16.	- 17		- 0	0	1,101	1,101	10.00	110	2,861	0.	14.60	15	1,960	.0.	602	.0
85 to 90	87.5	73.2	0.0	0	80	13	93	30	15	.0	0	643	. 643	10:00	-64	186.9	0	14.60	59	4,781	0.	2,190	0
80 to 85	82.5	6.69	0.0	*	167	50	225	214	55	.0	0	786	786	10.00	- 62	21.146	.0	14.60	54	14,484	. 0	6,662	0
75 to 80	77.5	65.3	0.0	35 2	216	108	359	354	16	.0	0	629	629	10.00	63	27.985	ū	14.60	.43	19,168	0.	8.817	0
70 to 75	72.5	62.4	0.0	83. 2	267	174	524	473	122	0	-0-	472	472	10.00	47	28,064	.0.	14.60	32	19,222	.0.	8,842	0
65 to 70	67.5	39.5	0.0	321 3	316	261	X62	606	156	0	-0-	314	314	10.00	31	23,960	0	14.60	. 22	16,411	. 0	7,549	0
60 to 65	62.3	54.9	0.0	279 2	289	344	912	738	-681	0	- 0 -	157	187	10.00	91	14,574	.0.	14.60	- 411-	9,982	.0.	4,592	- 0 -
				626	1352	952	2,930.	2,474	635	.0	0					126,955	0.			86.956	0	40.000	9

Cell Ref.	Comment
A-H	TMY-3 Weather Data for Danbury, CT
14	Occupied hours as per the RPP data
N	Occupied Cooling loads (MBH)
Z	Unoccupied Cooling Joads (MBH)
0	=1 col M x 1,000 = 3413 + (P44 + 3,413.)
Ь	= (1 col M [x, col 1] + [col N [x, col 1]) x 1,000 = 3,413 + (P44 + 3,413)
0	" (1 col M [x, [col K] + [col N] x [col L]) x 1,000 = 3,413 + (P44 = 3.413)
N.	= col M x 1,000 + 3413 + (P45 + 3.413)
50	= (1 col M x col 1 x col 2 x
1	$= (col M \times col K + col N \times col L) \times 1.000 + 3.413 + (P45 + 3.413)$
n	- col P - col S
^	

ssumptions:	Value	Unit	CELL	Description
			REF	
ccupied Area	13,605	SF	P43	
visting Cooling Efficiency	0.01	EER	P44	Based on Manufactures Spees and Derated based on Age
roposed Cooling Efficiency	14.6	EER	P45	Based on Manufactures Spees
creent Cooling Load	36001		P46	Percent of building cooling load provided by chiller

34.	R	15.69 Regression Equation for Proposed Chiller	18.95 kW/Ton = 0.0001 x Tons "2 + -1.0043 x Tons + 0.626	2) 19	21.28	20.2
Regr	EE	0.76	69.0	0.57	0.56	
Regr.	kW/ton					
	EER	15,70	18.90	21.26	21.26	
	kW/Ton	0.76	.0.63	0.56	0.56	
NAC.	kW	9.99	41.5	24.6	12.3	
Trane CGAM	Tons	87.2	105.0	43.6	21.8	
	% Light	1001	12	90	25	

Page 2 of 2

ECM 23: Siding Replacement

Putnam County, NY	
Energy and Demand Savings Summary	
Measure ID:	23
Measure Name:	Siding Replacement
Measure Location:	
Engineers:	

Site Name.		Golf	Summary
Item	Units	Savings	
Electricity			
Energy On-Peak	kWh	62	62
Energy Off-Peak	kWh		0
Energy Total	kWh	62	62
Demand On-Peak, Monthly	kW		0.0
Demand On-Peak, Annual	kW		0.0
Demand Off-Peak, Monthly	kW		0.0
Demand Off-Peak, Annual	kW		0.0
Fossil Fuel			0
Natural Gas (NG)	CCF		0
Liquid Propane Gas (LPG)	Gallons		0
Steam	Mlbs		0
Fuel Oil, #2	Gallons	133	133
Fuel Oil, #4	Gallons		0
Fuel Oil, #6	Gallons		0
Solar Value Stack	\$		0
Water			0
Water Savings	kGallons		0
Sewer			0
Sewer Savings	kGallons		0

Putnam County, NY Siding Replacement Putnam National Golf Club - Clubhouse

TMY-3 Weather Data for Danbury, CT	Data for Danbu.	uy, CT	3			14	xisting Occu	Existing Occupancy Schedule	le le	Pro	powed LMS	Proposed IIMS Operating Hours	- Lu	Existing					Proposed					Savings		1	
Anth, Temp Ave Bin des. P. da	Ave Temp M.C.W.B.	M.C. Kritishpy	cmoH 42-71 smol/ 04-10 smol/ 162-10	-10 House 17	24 Hours	Total Bin Hours	Occ On-	UniQue One	Oce Off. U	UnOce Offi- C	Oce On- 'Ul	UniQue One Oc Feak His. Pea	Oce Office Uniting Offi-	Oce Wall Coof Heal Load the (MBID	Vali UniQue feat Trans Wall d Heat Load (MISH)	od (BTU/hy-	Cooling/He sidng Finespy The Consump Consump	Lindec Cooling/He adm Energy Consumy (MMBTU)	Cool/Heat Lond CMBHs	UnOcc Trans Wall Hear Load (MBH)	UA (UTUAns den. P)	Cooling/He Cooling/He offing for the control of the		Cooling Savings MMRITU	UnOcci Cooling 1 Savings 8 MMISTUS (M	Oce Heating Savings MMB1T(), ()	UnOcc. Heating Savings MMIGTU)
Y	8	q	E	d.	9	=	-	-	2	-	N	Z	0	0	R	or.	1	10	^	11	×	٨	2	AA	AB	AC	AD
Cooling	100		-	7						1	1	j					1						Y		ij		
.01	107.5 0.0	0'0	0	0	0	0	0	. 0	0	0.	0	0	0 0	51	10	1,431	0	0	91:	388	.1.288	0	0	0	0		
100 to 105 10	102.5 0.0	0'0	0	0	0	0	.0	0	0	0	0	0	0 0	14		1,431	0	0	.30	32	1.288	0	0.	0	0		
	97.5 0.0	0.0	0	0	0	0	. 0	0	.0	0	i i	0	0 0			1,431	0	0	33	25	1.288	0	- 0	0	. 0	ĺ	
90 to 95 9	92.5 76.2	0'0	0	12	2	- 61	10	10	.0	0	100	10	0 0		ii	1,431	0	0	26	19	1.288	0	0:	0	0.		
85 to 90 8	87.5 73.2	0.0	0	08	13	- 63	47	14	.0	0	47	47	0 0	. 22	+1	1,431	0	0	20	12	1.288	0	0	0	. 0		
80 to 85 8	82.5 69.5	000	×	167	3/9	225	113	113	0	0	113	113	0		10	1,431	-	0	- 14	· o	1.288	-	- 0	0	0		
3		1	35	216	108	359	180	180	0	0	180	180	0 0	*	.0	1,431	0	0	7	0	1.288	0	- 0	0	0	ĺ	
70 to 75	72.5 62.4		83	267	174	524	262	262	.0	0	262		0 0	-	5	1,431	0	0	-	0	1.288	0	0:	0	0		
65 to 76 6	67.5 59.3	0'0	221	316	261	864	349	396	0	0	349	396	0 0	0	.0	1,431	0	0	0	0	1.288	0	0	0	. 0	ĺ	
60 to 65 6	62.5 54.9	0'0	279	289	344	912	456	456	0	0	456	456	0 0	Ö	0	1,431	0	0	0	0	1,288	0	- 0	. 0	0		
3								1									1							i			
9	57.5 48.4	0'0	287	248	205	830	415	415	0	0.	415		0 0	(18)	(4)	1,431	0	1	(16)	(3)	1,288	0	- 0	ĺ		0	- 0
50 to 55 5	52.5 44.8	0'0	280	288	314	87.0	440	440	0	0	440	44D.	0 0	(23)	(11)	1,431	0	9	(23)	(10)	1,288	0	9	i		0	-
45 to 50 4	47.5 41.5	0'0	291	891	242	701	351	381	.0	0	351		0 0	(32)	(18)	15431	3	8	(59)	(10)	1,288	ca	12.			0	1
40 to 45	42.5 38.0	0'0	255	212	237	704	352	352	0	0	352		0		(25)	1,431	9	11	(35)	(23)	1,288	9	. 10	i		-	-
35 to 40 3	7,5 33.3		330	192	244	766	383	383	0	0.	383		0 0			1331	H	91	(42)	(29)	1,288	30	15			-	to!
30 to 35 3	32.5 29.6	0'0	236	163	248	047	324	324	0	0	324	324	0 0		1	1,431	12	- 17	(48)	(35)	1.288	0	15	ĺ			27
25 to 30 2	27,5 24.1	0'0	206	- 56	132	433	217	217	0	0	207		0 0	(61)	(47)	1,431		14	(55)	(42)	1,288	- 6	12			1	-
20 to 25 2	22,5 21.6	0.0	691	89	- 64	306	153	153	. 0	0	153	153	0 0	(89)	(54)	15431	6	11	(61)	(48)	1.288	×	10			1	-
15 to 20 1	17.5 16.9	0'0	- 67	15	73	161	96	96	.0	0	96		0 0	(73)		1,431	2	*	(89)	(55)	1,288	9	-1.			_	_
10 10 15 1	12.5 10.5	0'0	- 45-	15	48	150	75	75	. 0	0	15		0 0	(82)	(89)	1,431	- 9	2	(74)	((9)	1,288	5	9.				1
5 to 10	7,5	0'0	53	20	37	- 110-	55	55	0	0	35	55	0 0	(88)	(75)	1,431	. 5	9	(81)	(89)	1,288	4	.20			ō	
600	2.5 1.9	0'0	- 88	0	21	69	43	- 57	0	0	43	13	0 0	(26)	(82)	1,431	-	10	(87)	(74)	1,288	+	+	Ī		0	- 0
-3400	(2.5) 0.0	0'0	24	0	_	35	13	13	0	9	(3	13	0 0	(101)	(89)	17431		7	(62)	(18)	1,288	-	-			0	0
+1010-5	(75) 0.0	0'0	iei	0.	0	3	7	2	0	0	i	2	0 0	(11)	(26) (1	1,431	0.	0	- (000) -	(83)	1,288	0	. 0.			0	- 0
-15 to -10	12.5) 6.0	0.0	0	0	0.	- 0	- 0	- 0	0	9	0	. 0	0 0	(118)	(104)	1971	- 0	0	(106)	(63)	1,288	0	-0-			0	0
-20 to -15	17.5) 0.0	0'0	0	0	0.	0.	0	- 07	. 0	0	0	0	0 0	(425)	010 - ts	17431	0 .	0	(113)	(100)	1,288	0	. 0.			0	- 0
-25 to -20 (2	(22.5) 0.0	00	0	.0	. 0	0.	0			0.	0	.00	0 0	(132)	(118)	1,431	-0	- 0	(110)	(100)	1.288	0	0			0	.0.
Ī	7		2,920	2.920	2.020	8,700	1,3801	4,380	8	0.	1,3101	4,380	0				1	31			ĺ	.09	06	0	0	*	11.

Assumptions:	Value	Chit	CELL	Description
			REF	
Total:Wall-Area	12,905	SF	143	per RFP
Wall Replacement Area	12,905	SF	744	Based on independent Walling and
Existing Wall Uvalue	100	BTU/deg F-s	145	per Baseline Data
Proposed Wall Uvalue	0.00	BTU/deg F-5	V46	Estimated
Existing Cooling Plant Efficiency	2.03	COP	V47	
Percent Building Cooled	100.0%		V48	
Healing, Plant Efficiency	3000		149	per Brachite Data

H-V	TMY-3 Weather Data to Dawlany, CT
1-I	Occupied hours after installation of EMS
M-P	Operating Itours after installation of EMS
	Cooling = 1 wil S [= 1,000 x (1 col B] - W55 to 1 feating = 1 wil S [= 1,000 x (753 - 1 col B]))
R	Cooding = 1 wil S 1 = 7,000 x (1 col B 1 - W34)), Heating = 1 col S 1 = 1,000 x (V34 - 1 col B 1))
93	+ Y44 x 745
	Cooking = 1 cd O [x (f cd 1] + f col K] + 1.500 + 347 s V48
	[fasting = MIN[[ox1] + [ox1 K] - [ox1 M] + [ox1 Ci] x MIN[[ox1] + internal gains , 0) + If (Lox1] + [ox1 K] - [ox1 M] + [ox1 K] - [ox1 M] + [ox1 M
	Cacling = 1 tol R St tol L 1 + 1 cal L 1 + 1 cal L 1 + 1 cal L 2 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 +
	Itenting = (1 col N 1 > 1 col P 1) x MIN(1 col R 1 > internal games . 0) + IV(1 col I I + 1 col M 1 < 1 col M 1 + 1 col P 1. (It col I I + 1 col R 1) x MIN(1 col D 2 > 4 to 0 col D 2 + 1 to 0 col D 3 = 1 col D
	+ [tol Q] + [tol S] x [tol X]
W	Tool R
×	+ 7/4/2 x 3/46
7	Cooling = [col V] x ([col 1] + [col K]) = 1,000 = N47 x V48
П	Heating = MIN(cold + cold N + cold N) + MiN(cold V + miseral gams, 0) + 11 (cold N + cold N + cold N) + cold N + col
	Cooling = Lutl W XC [col 1] = [utl L] > 4,100 = 947 x 248
	[desting = [] col N * [col F] > MIN[col W * internal gains , U) * [FP] col I * [col I M * [col I O] - (([col M] * [col I O] - ([col M]) * Col M]) * (and M] * [col I M] * (col M] * (
AA	= [\cdot 1 - [\cdot 1]
AB:	= [val U] - [val Z]
AC	= [col T] = [col Y]
AD.	= co 1 - co 7

0/31/2019

Page 2 of 2

ECM 24: Roof Replacement

Putnam County, NY		
Energy and Demand Savings Summary		
Measure ID:	24	
Measure Name:	Roof Replacement	
Measure Location:		
Engineers:		

Site Name:		Golf	Gov2	Gov3	Kern	Summary
Item	Units	Savings	Savings	Savings	Savings	
Electricity						
Energy On-Peak	kWh	25	134	217	86	474
Energy Off-Peak	kWh					0
Energy Total	kWh	25	134	217	86	474
Demand On-Peak, Monthly	kW					0.0
Demand On-Peak, Annual	kW					0.0
Demand Off-Peak, Monthly	kW					0.0
Demand Off-Peak, Annual	kW					0.0
Fossil Fuel						0
Natural Gas (NG)	CCF		484	872	322	1,678
Liquid Propane Gas (LPG)	Gallons					0
Steam	MIbs					0
Fuel Oil, #2	Gallons	54				54
Fuel Oil, #4	Gallons					0
Fuel Oil, #6	Gallons					0
Solar Value Stack	\$					0
Water						0
Water Savings	kGallons					0
Sewer						0
Sewer Savings	kGallons					0

Putnam County, NY Roof Replacement Putnam National Golf Club - Clubbouse

I	UnOce. Heating Savage (MMMICTU)	AD	1												0.0	.0	.0.	.0.	10 CO	- 32		. 0.	. 0.		.0.	.0	-0	. 0	. 0	0	.0.	4
	Occ Heating Savings (MMBF11)	VC						7							- C	- 0	- 00	- 0	- 0		- 0.	-0.	- 0	0	- 0	-0.	- 0	0	0	- Q	- 0	PF.
Ì	Unclear Cooling Savings MMITT ¹ 1	AB		0	-0	()	(X)	- 0.	0	0	0	0	0																			Ø
Savings	Cooling Savings MMRCTU	VA		-0	-0	-0	0	0	0	.0	.0	0	o				7															0
	UnOve Cooling/Hear ting Energy Consump (MMBTU)	2		0 -	0	0	0	0	0	0	0	0	0	1	0	_	1	2	3		ci	2	1	1	1.	-	0	0	0	0	0	.60
ľ	Cooling/Heat Cooling/Heat tray Energy tray Energy Consump Consump (MMBTU) (MMBTU)	Y		0	0	-0	0	0	0	0	0	0	0		0	0	0	- T-	2	6	2	x.i	TOTAL TOTAL	1	1	1	0	0	0	0	0	13
	GA (MTS/far	X		251	251	251	351	251	251	251	251	251	251		151	351	251	.251	251	251	251.	121	-251	251	251	251	251	251	251	251	151	
İ	UnOcc trams. Roof Heat Lond. U	W		K	- 9	3	7	2	1	0	- 0	0	- 10		:00:	(2)	(3)	(4)	(0)	(2)	(8)	(6)	(11)	(12)	113)	.1147	(91)	(11)	7183	(191)	(31)	
Proposed	Cool Heat Load (MBH)	A		ó	os:	- Q	5	7	3		- 00	. 0	0		(3)	(4)	(9)	(2)	(8)	(6)	(11)	(12)	(13)	(14)	(10)	(12)	(18)	(10)	(21)	(22)	(23)	
1		0		0	0	-0	0	0	0	0	.00	0	0		- 0	-	2	-2		,	3	17	2	6	1	-	0	0	0	- 0	0	75
-	Cooling/Rea Cooling/Hea ting Energy Ting Unersy Constamp Constant (MMISTU)	1		0	0	0	40	-0:	0	0	.0	. 0	O		0.	0.	1	1	. 2		. 2		3.0	1 - 1		-	0	0	0	0.	.0	12.
f	C. tr (1977)/day (day 1/). ((×		310	310	310	310	310.	310	310	310	.310	310		310	310	310	310	310	310	310	310	310	310	310	310	310	310	310	310	310	Ī
Ì	UnOcc fram Roof Real Load 17, (MBH)	И		- 6	8	9	4	3	-	0	0	-0	ó		(0)	(2)	(6)	(5)	(2)	(6)	(10)	(12)	(13)	(5)	(10)	(18)	(61)	(21)	(22)	(24)	(26)	
Evisting	Dec Roof and/ Heat Tr Loont F	0		U	6-	96	9	91	4	.5	.0	0	0		(4)	(3)	(2)	(6)	(10)	(12)	(13)	(51)	60	(18)	(10)	(21)	(22)	(24)	(36)	(22)	(20)	
	UnOcc Oill- Peak lits	-		0.	. 0	.0	- 69	0	0	0	.0	. 0	0		.0	.0	0	0	. 0	0	0	0	0	.0	0	.0	. 0	0	.0	.0	0	0
fours	Our Off. T	0		. 0	. 0	0	.0	0	0	· · · ·	. 0	0	. 0		. 0	0	0	0		. 0	. 0	G	. 0	.0	0	0	0	0	0	0	0	.0
posed EMS Operating Hours	UnOxe On- Peak Hrs	N		.0	.0	0	10	11.2	113	180	262	309	456		415	440	351	352	383	324	217	123	96	75	55	43	13	2.	0	0	0	4.380
oposed EMS	Oce On- 3	M		. 0	.0	0	- 01	-42	113	180	262	300	456		4115	440	351	352	383	324	217	153	96	75	- 55	- 27	13	7	0.	0	0	4,380
Pro	Finther Offi- Peak Ris.	7		0	-0		.00	-0.	- 0	0.	.00	.0.	0.		-0	- 0.		. 0.	0	.0	.0.	.0.	- 0.		.0.	0.	0.	- 0	. 0.	0	0.0	.0.
le	OccOB: 17	×		-0.0	-0.	- OX	- OX	- OX	ν.	0	0	0	0		0	- 02	0	.0.	0	.0	0	0	- (X	(X)	.0	20.	0	0	0	O.	0.	Φ
Existing Occupancy Schedule	Und ker Cin- Peak Hrs.	f		-0	-0	-0	10	-42	(13	180	262	309	456		413	4:50	351	352	383	324	217	153	.96	75	55	43	13	2	0	- 0	0	4,3800
risting Occup	Oce On- Peak His			0	0	0	10	47	113	180	262	300	456		415	440	351	352	383	324	217	153	.96	7.5	-35	43	13	2	0	0	0	4,380
9	Total Birr Hours	Н		0	0	0	61	0.3	225	359	524	798	912		830	879	701	704	766	647	433	306	161	150	110	88	25	3	. 0	. 0	0	8,760
Ì		9		0	0	0	2	13.	50.	801	174	261	丟		295	311	242	237	244	248	132	562	73	18	37	21	1	0	0	0	0	2,920
Ì	-16 Hours 13	ь		-0	-0	Ü	1.1	- 80	167	216	267	316	289		248	388	168	212	192	163	0.5	89	510	57	20	9	0	0	- 0	0	0	0267
ŀ	01-08 Lions (01-16 Hours, 17-24 Hours	4	1	0	0	-0	0	-0	50	35	83	221	279	-	287	280	291	255	330	236	206	159	. 29	165	53	28	24	m	0	0	0	2,920
f	M.C. Calhidge Stufbens 01	D		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
anbury, CT	MCWB 6	2		0.0	0.0	0.0	76.2	73.2	69,5	65.3	62.4	30.5	54.0		48.4	44.8	41.5	38.0	33.3	29.6	24.1	31.6	16.9	10.5	6.4	1.9	0.0	0.0	0.0	-0.0	-0.0	
TMY-3 Weather Data for Danbury, CT		B		107/5	102.5	526	92.5	87.3	82.5	27.5	72.5	67.3	62.5		57.5	\$2.5	17.5	42.5	37.5	35.5	27.5	22.5	17.5	12.3	7.5	2.5	(2.5)	(2.5)	(12.5)	(17.5)	(22.5)	
IV-3 Weaths	Amb Temp Ave Temp Bin deg F	Y	Cooling	100	100 to 105	95 to 100.	90 to 05	85 to 90	80 to 85	75 to 80	70 to 75	65 to 70	60 to 65	Heating	. 0	50 to 55	45 to 50	40 to 45	35 to 40	30 to 35	25 to 30	2010.25	15 ta 20	10:00:15	5 to 10	0 to 5	-5 to 0	-10 to -5	-15 to -10	-2010-13	25 to 20	

Cell Ref.	Continent
A-H	TWA'3 Weather Data for Dushiny, CT
1.1	Cxcupied hours after installation of EMS
M - P	Operating hours after installation of EMS
0	Conding = 1, cot S 1 + 1,000 x ([cot B] - W33)), Trenting = 1 cot S 1 - 1,000 x (V33 - 1 cot B 1)
×	Cooling = 1 col 81 + 1,000 x (f col II - W54)). Boston = 1 col 81 + 1,000 x (f 24 + 1 col 81 + 1,000 x (f 24
95	= Y4/8 Y45
-	Cooling 1 Led O 1x (1-ot 11 + 1 cot X 11 + 1,000 + Y47x Y48
	[testing = MIN(ent II + [cot X , [cot X + [cut O]] x MIN([cot O] + internal gains ; 0) + Ii ([tat II + [cot X + [cut II] + [cot X + [cut IN] + [cot X + [cot II]]] x MIN([cot II] + [cot II] x
20:	Coobing 1 cel R 3x C cel J 1 + [cel L 13 + 1.000 c + V47 x Y 28
	Hosting * (Col N * col P) x MIN(Col R * internal gains . (b) + IE(Col II + col R > (col M + col O - (i) col M + col O + (col M + col M + col M + (col M + col M + col M + (col M + col M + col M + (col M + col M + col M + (col M + col M + col M + col M + (col M + col M + (col M + col
>	= 1 and Q1 = 1 and X3
W	= (cd R = 1 cd S x zd X
X	# YY X YY =
~	Cooting = For V 1x (1 od 11 + Lod X 1) = 1,000 = Y47 x Y48
	Housing = MIN(red II Fold XI Gold MI Fold OI) x MIN(red VI + internal gains, U) = IT(red II + Fold XI > [and MH-fold OI , (tpol II + Fold XI > [and KI > tpol MI + Fold OI] x MIN(red VI + internal gains, O), Q) = 1,000 + 749
2	Conting = I cel W X (1 col L I 1 - I col L I 2 - I col L I 3 - I col L
	Hosting = ([ool N] = [ool V] > MIN(ool W] = internal gains , 0) = IP(ool I] = [ool M] = [ool O] . ((ool I] = [ool N] =
VV	= [col T -] col Y]
AD	= (or (i) - (or (i)
AC	=[x0[T]-[x0[X]]
AD	a of [1] . co 2]

Assumptions:	Value	Unit	CELL	Description
			REF	
Total Roof Area	12,519	AS	7.43	per RIIP
Roof Replacement Area	6.650	AS	744	Only Flat Portion of Roof Receiving In
Existing Roof Uvalue	0.0466	BTU/deg F-9	V45	per Baseline Data
Proposed Roof Uvalue	0.0378	BTU/deg F-3	V46	Estimated
Existing Cooling Plant Piffgiency	2.03	COP	V47.	
Percent Building Cooled	100:090		7.48	
Hearing Plant Efficiency	70%		V-19	per Baseline Dala

rerage Space T	[emperatu	res			The state of the s
	Cooling		Heating		Description
ecupied	72.0	WS3	70.07	V53	
Documed	78.0	W54	0.09	Y54	

Page 2 of 5

Putnam County, NY Roof Replacement Donald B. Smith Government Campus - Building 2

IY-3 Wear	ther Data f	TMY-3 Weather Data for Danbury, CT	CT				Ex	isting Occup	Existing Occupancy Schedule		Propo	sed EMS (posed EMS Operating Hours		Existing	3	þ			Proposed					Savings			
Amb Temp Bludes E	Ave Temp	MCWB	M.C. Galhalto Blu/Dena	sm9H 45-71 sm9H 91-00 sm9H 80-10	(Hours, 17.2		Total Bin C	Oce On- Un	Uniber On- Oct	Occordi: find	FinOce Off. Oxer	Oss On- Und Peak Mrs. Peak	InOce On- Our	Ose (M) - TanOse (M)- Peak liss - Peak liss	Dec Reof Cond/ Best EOH- Lond Hiss (MBB)	of UnDecember Frank Rowl Feat Load OMBHO	11A (B)		Cocc Unicke Coolings has Coolings has ting finergy ting lineray Consump. Concomp.	Cool Heat Load (MIB)	UnOcc Trans. Root Heat Load	UA (UTUÑa: Jen. P)		Occ. UniOcc. Cooling/Heat Cooling/Heat Into Energy time therepy Consump Consump (Amaritti) (Amaritti)	Cooling Savings (MMICTL)	Unoce Cooling Savings	Occ Heating Savings	UnOce. Heating Savages
V				L.	4	ı.	۰	٠	٠	٠	+	+	٠	ľ	t	t	×	۰	-	^	A	×	Α.	2	VA	NΒ	VC	ΥD
Cooling						ľ				-														1	1			
105 to 110	107.5	0.0	0.0	0	-0	0	0	0	-0	O.	0	. 0	0	0 0		32	1,175	0	0	24	10	674	0	0 -	-0	0		
100 to 105	102.5	-0.0	0.0	0	0	0	0	0	-0	0	0 -0	. 0	0	0 0		26	1,175	0	0	21	15	674	0	0	0	0		
95 to 100	526	0.0	.0.0	-0	2	0	0	0	0	O.	0 0		0	0 . 0	340	77	1,175	0	0	-12	12	674	0	0	0	0		
90 to 05	92.5	76.2	0.0	0	17	2	61	75	14.	· ·	00	1				2	1,175	Œ.	O	14	5c	674	0	0	0	0.		
85 to 90	873	73.2	0.0	-0	- 178	13.	03	33	71.		2	51		0 0	49	6	1,175	0	0	100	(F)	674	0	0	0	-0.		
80 10 85	82.5	69,5	0.0	50	191	-	225	34	1/1	O.	0 8		121	0 0		45	1,175	0	0	7	**	674	0	0	0	0		
751680	77.5	65.3	0.0	35	216	801	359	88	27.4	0	.0	H		0 0		0	1.175	0	0	7	0	674	0	0	0	0		
70 to 75	72.5	62.4	0.0	83	267	174	524	125	366	0	0 12		366	0 0	-	0	1.175	0	0	0	0	674	0	0	0	0		
65 to 70	67.3	30.5	0.0			261	798	190		0		190			0	0	1.175		0	0	0	674	0	0	0	0		
60 to 65	62.5	54.0	0.0			天	912	217		0	0 .21	-		0 0	0	o	1,175	g .	0	0	G.	674	0	0	o	0		
Heating							-	1																1		1		
55 to 60	57.5	48.4	0.0	1			830	108	ľ	0		-		0 0	(12)	(0)	1,175	0.	0	(8)	(0)	674.	0	0			()	0
50 to 55	\$2.5	44.8	0.0	280	388		879	200	929		0 3	200		0. 0	(21)	(9)	1,175		rich.	(12)	(4)	674.	0	1			- 0	1
45 to 50	544	41.5	0.0	291		242	701	167	534	ū	0			0 0		(12)	1,175	-	9	(15)	(2)	674	0	45			- 0	+1
40 to 45	42.5	38.0	0.0		1	237	704	168		. 0	91 0		536		(32)		1,175	7	0	(19)	(10)	674	- T- 1	. 3.			J	. 4
35 to 40 .	37.5	. 33,3	0.0	330	17	244	766	182	584	0	018			0 0		(24)	1,175	1000	H - H	(22)	(14)	674	. 2	80				9
30 to 35	32.5	29.6	0.0	236			647	154		0.	0 13	154		0 0		(30)	1,175	4	(5)	(25)	(11)	674	c)	6			7	. 9
25 to 30	27.5	24.1	0.0.	1	50	132	433	103	330	0	0. 10		1	0 0		-	1,175	15	12	(29)	(21)	674	2	7.	-		T	5
2010.25	22.5	21.6	0.0	159	89	62	306	7.3	233	0.0	2 0		233	0 0	(96)	(42)	1,175	9	30	(32)	(34)	674	r.i	· ·			1	#
15 to 20	17.5	16.9	0.0			73	161	45		0	4 0			0 0			1,175		7	(35)	(22)	674	1.	- 9			1.	ie:
10:10:15	12.3	10.5	0.0	.15	37	18	150	36	114	O.	3		1.0	0 0		(53)	0,175	2	9	(35)	(31)	674	1	- 10			T	in
5 to 10	7.5	6.4	0.0	53	20	37	110	26	84	0	0			0 0		(50)	1,175		5	(42)	(34)	674	1	3			1	7
0.10.5	2.5	1.9	0.0	88	9	21	88	20			0 3			0 0	(07)		1,175	-	32	(42)	(37)	674	1	/es			1 T T T	7.
-5400	(2.5)	0.0	0.0	34	0	1	25	9	. 61	0	0	9	61	0 0	(82)	(12)	1,175	0	7	(49)	(41)	674	0	1			.0	-
5-01015-	(7.5)	0.0	0.0		. 0	0	3	-	2	0	0	_	2 (0 0			1,175	0	0	(52)	(44)	674	0	0			0	0
-15 to -10	(12.5)	0.0	0.0	0	. 0		. 0	. 0	0	0	0 0	. 0	0	0 0	Ū		1,175	0	0	(95)	(481	674	0	0			0.	0
-2010-15	(117.5)	0.0	0.0	0	0	0	0	0	0.	· ·	0	. 0	0	0 0	(303)	(88)	1,175	0	- D	1657	(15)	674.	0	0			- 0	0
-25 to -20	(22.5)	0.0	0.0	0	0	0	0	0	0	0.0	0	0	0	0. 0.	(400)		1,175	0	0	(62)	(34)	674	0	0			- 0	0.
		Ī	Ī	7 1970 3	5,620	2 1930	9 700	2 1967	A 87.3	0	14.	7 1965 6	6.673	9. 9		_		44	100		į	į	13	7	.0.	0		ope
1				ł	ł	ł	ł	1	1			ł	1	1														

Cell Ref.	Comment
A-H	TMAY-3 Weather Data for Danbiny, CT
1.1	Ckcupied hours after installation of EMS
M. P	Operating bours after installation of EMS
0	Concling = [cot S 1 + 1,000 x ([cot II] - W53)), Thatring = 1 cot S 1 + 1,000 x ([v53 - 1 cot II])
×	Configs = 1 col S] + 1,000 × (f col B] + W54), Heating = 1 col S] + 1,000 × (f col B] + 1
95	= V4/N X/1S
-	Cooking = tot Q X (col 1) + col K 1 + col K 1 + col N 2 + Col N
	[Resting = MIN([cd I] + [cd K], [cd M] + [cd O]] x MIN([cd O] + internal gains; 0) + fr([cd I] + [cd M] + [cd O]); x MIN([cd I] + [cd O]); x MIN([cd II] + [cd O]); x MIN([
20:	Coulding = 1 cot R 3 x C1 cot 3 f + 1 cot 11.13 = 1,000 = Y47 x Y48
	Heating # (Cot N 1 * Tod P I) x MIN(Tod R 1 * internal gains, 0) + IP(Tod N 1 * Fod S I - (Cot M 1 * Fod O I) - (Cot M 1 * Fod O I) - (Rol I I) + Fod S I * internal gains, (0) * 1.000 * 2.99
>	= [cot Q] > [cot S x cot X]
W	= col k = col S x col X
X	** *** *** *** *** *** *** *** *** ***
>	Cooking = [vol V] x (1 vol J] + 1 vol V] x (1 vol J] + 1 vol V] x (2 vol J] x (3 vol V] x (3 vol V] x (4 vol V I) x
	Howing # MIN([Sol 1] # [col N] + [col N] * MIN([sol 1] * MIN([sol V] + internal game, 10 + If ([sol I] + [col N] > [col M] + [col N] + [col O]) x MIN([sol N] + [col O]) x
2	Civoling = I col W Ix (1 col J 1 1 of L I) = 1,000 = Y47x Y48
	Hesting = (1 ool N + f ool P) x MiN(oot W + internal gains , 0) + iP(f red L] + f cal M + f ool O . ((f rad M + f red D) . ((f red L] + f ool N + f
VV	= { tel T1-} led Y1
AD	= [cal U] - [cal Z]
AC	=[x0/T]-[x0/Y]
AD.	= [m[1] : m[2]

Assumptions:	Value	Unit	CELL	Description
			REF	
Yotal Roof Area	13,481	AS.	7.43	per RITP
Roof Replacement Area	13,481	AS	744	Based on independent rotting inulyse
Existing Roaf Uvalue	0.0872	BTU/deg F-9	V45	per Buseline Dula
Proposed Roof Uvalue	0.0500	BTU/deg F-8	V46	Estimated
Existing Cooling Plant Pfficiency	2.03	COP	V47.	
Percent Building Cooled	100.095	-	X48	
Hearting Plant Efficiency	5006		V49	per Baseline Dala

Cooling Heating Description Description 72.0 NS3 Description Inflocuped 72.0 NS4 NS4 80.0 NS4 S6.0 NS4	Average Spac	e Temperatur	sau				
70.0		Cooling		Heating		Description	
58.0	Decupied	72.0	WS3	70.07	YS3		
	InOccupied	80.0	W54	58.0	Y54		

12/9/2019

Page 3 of 5

Putnam County, NY Roof Replacement Donald B. Smith Government Campus - Building 3

Ī	Uncless. Heating Savanges (MMMSTU)	AB													0.	- 17	35	.0	01	11	6	50		*	-	3.	1	. 0	0	0 -		95
	Oec Heating Savings OMMBT(1)	JV.													- 0	1	1.		1	4		10	7	2	1		. 0	0	0		0.	7.1
	UnOcc. Cooling Savings (MMITT)	AB		0,	- 03	-0.	×	- 03	0	0	0	0	- 0																			0
Savings	Occ. Cooling Savings MMIRTU	AA		-0	0	-0	0	0	- 0	0	-00	-0	-0																			- 0
	UnOce Cooling/Lear ting Energy Consump (MMBTU)	2		0	0	0	0	0	0	0	0	0	0		0	1	4	*	13.	14	12	10	7	- 22	yr.	10	2	- n	0	0	0	9.8
	Cooling/Heat Cooling/Heat ting Energy ting Energy Consump Consump (MMBTU) (MMBTU)	٨		0	0	.0.	0	0	0	0	0	0	0		0	1	2	3		5		3	2	2	7	7	-0-	0	0	0	0	12
	UA (ITITANE deg. F)	X		1,004	1,004	1,094	1,094	1,094	1,094	1,094	1,094	1,094	1,094		1,004	1,094	1,094	1,094	1,094	1,004	1,004	1,3994	1,004	1,094	1,094	1,094	1,094	1,094	1,094	1,094	1,004	Ī
	UnOcc rams. Roof Heat Load V	W		30	25	61	- 77	60	.3	0	0	0	- 10		0	(3)	(8)	(14)	(61)	(25)	(30)	(36)	(41)	(90)	(52)	(57)	(63)	(89)	(74)	(42)	(82)	Î
pandad	Cool Heat Load (MBH)	V		39	33	28	22	17.	11	9	1	0	0		(15)	(20)	(26)	(31)	(37)	(42)	(48)	(53)	(39)	(64)	(69)	(22)	(80)	(80)	(116)	(26)	(102)	Ī
1	UnOxo Cooling/Rea fring Unorny Convinto (MMISTU)	Ω		- 0	0	-0-	0	0	.0	0	.00	-0	0		- 0	1	8	11	23	25	21	18	13	- 11	6	8	33	- 0	0	- 0	0	155
	Occ Society Early District Consump (MMUSTU)	1		0	-0	0	0.	:O:	0	.0	0.	- 0	0	1		1 - 1	3		80	- 6	7	16	4	-4	3	3	-	0	0	. O.	10	35
	UA (MIT)/day	S		1,907	1,907	1,907	1,007	1,982	1,907	1,907	1,907	1,907	1,947		1,907	1,907	1,907	1,907	1,907	1,907	1,967	1,987	1,907	1,907	1,907	1,907	1,907	1,907	1,907	1,907	1.907	Ī
Ì	UnOcc Frum Ross! Real Loss! [1] (MBH)			52	43	33	23	170	95	-0	0	-0	0.		0.0	(3)	(14)	(24)	(33)	(43)	(52)	((29)	(22)	(81)	(16)	(100)	(011)	(119)	(129)	(138)	(148)	Ī
Evising	Oec Roof Lond/ Heat T Lond 1	0		89	58	46	- 30	30	20	10	1	.0	.0.		(50)	(35)	(45)	(54)	(64)	(73)	(83)	(93)	(102)	(112)	(121)	(131)	(0+1)	(150)	(150)	(369)	(178)	
	(mOcc Oill- Peak life	-		0	. 0	. 0	0	-0	.0	.0	.0	0	0			0.	- 0	0	. 0	.0	0	0	0	.0	0	.0	. 0	0	0	. 0	.0	- 02
fours	Our CHI. T	0		. 0	.0	. 0	U	. 0	0	. 0	. 0	0	. 0		0	.0	0	0		. 0	. 0	. 0	. 0		0	. 0	0	. 0	0	0	0	9
Operating	UnOxe On- Peak Hrs	N		.0	.0.	. 0	- 11	7.1	121	274	366	809	569		.632	670	534	536	584	493	330	233	146	114	84	- 59	-61	2	0	0	0	6.673
Proposed EMS Operating Hours	Oce On-	M		0	.0	- 0	2	22	. 54	85	125	190	217		198	200	107	168	182	154	103	7.3	45	36	26	20	9	1	0	0	0	7 11865
4	FinChe Offi.	7		.0.	.0		.0	.0.	0	.0	.0	.0	.0.		.0	- 0	0	0	0	0	0	0	- 40:	0	.0	0.	0	.0	. 0	0	0.0	- (00
- le	Occolli: F	4		-0.	-0	· O.	χ).	- 0.	. 0	0	0	0	- 0		0	- 0	0	.0.	0	.0.	0	.0	- O	T)	0.	Ю.	0	0	4)	O.	0	0
Existing Occupancy Schedule	Unt kee On- Peak Hrs.	-		-0.	-0	-0	14	7.1	121	27.4	366	809	\$69		632	929	534	536	584	493	330	233	146	114	184	- 65	- 61	2	0	0	0	6.673
visting Occu	Oce On-			0	0	- 0	-	33	34	88	125	190	217		1.08	200	167	168	182	154	103	73	45	36	26	20	9	1.	. 0	0	0	2.086
	Youal Bin Boars	=		0	0	0	61	50	225	359	524	798	912		830	879	701	704	766	647	433	306	161	150	110	88	25	3	0	0	0	8.760
	24 Hours	9		- 0	0	0	2	13.	50.	801	174	261	7.		295	311	242	237	244	248	132	79	73	18	37	21	1	0	0	0	0	2.020
	Lift House L	A		0.	- 0	- U	1.1	- 80	191	216	267	316	289		248	388	168	212	192	163	0.5	89	- 215	37	20	9	0	0	- 0	0	0	2,920
	01-08 Hous (9-16 Hous 17-24 House	42		- 0	0	- 0	0	-0	80	35	83	221	279		287	280	291	255	330	236	206	159		. 15	53	58	24	n	0	0	0	2.020
ŀ	M.C. Cathalpy Bits/Bens. 01	Q		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	.0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Janhary, C.I.	M.C.W.B.			0.0	0.0	0.0	76.2	73.2	69.5	65.5	62.4	30.5	54.9		48.4	44.8	41.5	38.0	33,3	29.6	24.1.	31.6	16.9	5.01	6.4	1.9	0.0	0.0	0.0	0.0	0.0	Ī
IMY-3 Weather Data for Danbury, CT	Ave Temp A	B		10705	102.5	526	92.5	87.8	82.5	77.8	72.5	67.3	529		57.5	\$2.5	47.5	42.5	37.5	32.5	27.5	22.5	17.5	12.3	7.5	2.5	(2.5)	(7.5)	(12.5)	(17.5)	(22.5)	
Y-3 Weath	Amb Temp A	Y	Cooling	105 to 110	100:to 105	95 to 100.	90 to 05	85 to 90	80 to 85	75 to 80	70 to 75	65 to 70.	59 01 09	Teating	55 to 60 .	50 to 55	45 to 50	40 to 45	35 to 40	30 to 35	25 to 30	20 to 25	15 ta 20	10:00:15	510 10	0.10-5	-5400	-10 10	-15 to -10	-2010-13	-25 to -20	

Jell Ref.	Comment
A-H	TMV-3 Weather Data for Darbinay, CT
1-1	Ckcupied hoars after installation of EMS
M · P	Cherating bours after insulation of EMS
0	Civoling = 1 cot S + 1,000 x (cot D - W53)), Thenisme = 1 cot S + 1,000 x (cot D - W53)
Ж	$C(\operatorname{soling} = \{ \operatorname{cot} S \} + 1,000 \times (\{ \operatorname{cot} B \} - WS4 \})$. Banting $= \{ \operatorname{cot} S \} + 1,000 \times (\{ \operatorname{cot} B \} - WS4 \})$.
95	$= \frac{1}{2} \frac{1}{4} $
	Cooling = vol Q x (cot I) + vol K 1 + 1,000 + Y 47 x Y 48
	[Gesting = MIN([ad I] + [col X], [col M] + [col O]] x MIN([col Q] + internal gains; 0) + I/([ad I] + [col M] + [col M] + (ad M) + (ad M)) x MIN([col M] + (ad M) (ad M) + (ad M) + (ad M) (ad M) + (a
20	Cooling = I col R J x (I col J J + I col L L) = 1,000 = V47 x Y28.
	Hatning # (Col N * Tool P) x MIN(Lool R * internal gains 10) + IF(Col N * Fool R * internal gains 10) + IF(Col N * Fool R * internal gains 10) + IF(Col N * Fool R * internal gains 10) + IF(Col N * Fool R * internal gains 10) + IF(Col N * Fool R * Internal gains 10) + IF(Col N * Intern
>	= [tot Q] > [tot S x tot X]
W	= col k = col S x col X
×	= Y44 x Y46
×	Cooling = [col V x (col I 1 + col X 1 + 1 col X + 1 + 2 x Y 48
	Howling # MIN([sol 1] + [col N] , a MIN([sol 1] * [col N]) x MIN([sol 1] + [col O]) x MIN([sol N] + [sol O]) x MIN([sol N] + [col N]) x MIN([sol N] + [sol O]) x MIN([sol N] + [sol N] + [sol N]) x MIN([sol N] + [sol N] + [sol N]) x MIN([sol N] + [sol N] + [sol N] + [sol N]) x MIN([sol N] + [sol N] + [sol N] + [sol N]) x MIN([sol N] + [sol N] + [
2	Cooling = I col W $x \in \{0.01, 1\} + \{0.01, 1\} = 1.000 + 247 x \text{ Y48}$.
	Hesting = ([ol N + [or P]) x MDN [oct W] + internal gains , 0) + DH [od L] + [ord K] + [ord O] - ([ord I] + [ord O]) + ([ord I] + [ord V] + [ord O]) + ([ord I] + [ord O]) + ([ord
VV	= [col T - [col Y]
Alx	= [m L m Z
AC	[[[ol T] - [ol Y]
QV	= [0][1]-[0][2]

Assumptions:	Value	Unit	CELL	Description
			REF	
Yotal Roof Area	21.878	- IS	743	per RIP
Roof Replacement Area	21,878	AS	744	Based on independent rotting analysis
Existing Roof Uvalue	0.0872	BTU/deg F-9	V45	per Baseline Duta
Proposed Roof Uviling	0.0500	BTU/deg F-8	V46	Estimated
Existing Cooling Plant Efficiency	2.03	COP	V47.	
Percent Building Cooled	100:099		X48	
Hearting Plant Efficiency	77%		V-19	per Baseline Dala

verage State	e lemberatu	res				
	Cooling		Heating	1000	Description	
ceupied	72.0	W53	71.0	V53		
Docupted	80.0	W54	55.0	Y54		

12/9/2019

Page A of 5

Putnam County, NY Roof Replacement Kern Building - Health Dept/DMV/WIC

T	UnOsc. Heating Savage (MMISTU)	AB													0.0	0	-	2.	A	4	15	m	3	è	re	1.0	-0	. 0	. 0	0		26
	Occ Heating Savings (MMB/F1))	VC													- 0.	- 0	- 0	1 - 1 -			C	-	1.0	- 3	- 0	- 0	- 0	0	0	- 0	- 0	p
Ì	UnOcc Cooling Savings MMUTTU	VΒV		0.	0	0	13	-0.	0	0	0	0	0																			0
Savings	Occ. Cooling Savings MMRITU)	AA		-0	-0	-0-	0	0	0	- 0	.0	- 0	0			-	7	7	Ì													0
8	UnOve Cooling/Hear ting Energy Consump (MMBTU)	2		0	0	0 -	0	0	0	0	0	0	0		0	1	*1	3	.5	- 9	2	т	eri	(m)	2	2	-	0 .	0	0	0	35
ľ	Cooling/Heat Cooling/Heat ting Energy ting Energy Consump Consump (MMB/TU) (MMH/TU)	٨		0	0	-0	0	0	0	0	0	0	0		.0.	0	0	- T		6	- T	1	POT TOTAL	1	1	-	0	0	0	0	0	.01
	GA (BITIME deg F)	X		413	413	413	413	413	413	413	413	413	413	1	413	413	413	.413	413	413	413	413	413	413	413	413	413	413	413	413	413	
Ì	Unione Trains, Rood Ment Lond, U.	W		.12	.01	60	9.		. 2	0	0	0	- 10		- 0	(1)	(3)	(5)	(2)	(0)	(0)	(13)	(15)	(18)	(20)	(22)	(24)	(26)	(28)	(30)	(32)	
Proposed	Cool Roof Cool Heat D Lond D	٨		1.5	13	11	×	9		**	00	. 0	0		(9)	(8)	(11)	(13)	(15)	(12)	(61)	(21)	(23)	(25)	(22)	(58)	(31)	(33)	(35)	(37)	(36)	
P.		0		- 0	0	0	0	0	0	0	0	0	0		- 0	1	ir.	3.	- 6	10.	8	2	(2)	7	7	3	-	0	0	- 0	0	:00:
	Cocling/Hea Cooling/Hea tring Energy Fing Energy Consump Consump (AMMISTU)	_		0	-0	0	33	0.	. 0	.0	.0.	-0	0		0.	0	1	1	. 2	3	. 2		2	1	1	-	0	- 0	0	. O.	. D.C.	1.2
ŀ	Co th th (BEN)/hr C	s		721	721	721	721	721	321	721	721	721	721		721	721	721	721	721	721	721	721	721	721	721	721	721	721	721	721	721	
	UnOcc frum, Root Heat Load II/ (MBH)	K		21	30	14	01	3.	3	.0	0	. 0	0		0.	(5)	(5)	(6)	(13)	(16)	(20)	(23)	(22)	(31)	(34)	(38)	(41)	(45)	(40)	(52)	(20)	
Evisting	Dec Roof Lossit Heat Fr Lossit H	0		26	22	18	15	- 310	8		.0	0	. 0		0.00	(15)	(18)	(22)	(26)	(29)	(33)	(36)	(40)	(44)	(42)	(51)	(54)	(88)	(62)	(65)	(69)	
3	(mOce (M). Peak lits	-		0	. 0.	. 0	- 69	0	.0	0	.0	.0	.0		.0	.0.	0	0	. 0	.0	0	0	0	0	0	.0	. 0	0	.0	.0	0	0
innry	Ose Other Tr	0		. 0	. 0	. 0	.0	. 0	0	. 0	. 0	0	0		. 0	.0	0	0		. 0	. 0	U	. 0	.0	0	0	0	. 0	0	0	0	. 0
posed EMS Operating Hunry	UnOce On-	N	- 1	. 0	.0.	. 0	40	7.1	121	274	399	809	569		632	670	534	536	584	493	330	233	146	114	84	65	- 61	2	0	0	0	0.674
oposed EMS	Ose On- 1	M		- 0	. 0	- 0	20	22	. 54	85	125	190	217		198	200	107	168	182	154	103	7.3	45	36	26	20	9	1	. 0	0	0	2,086
Prop	FinCxe Off.	7		.0.	0.		×0×		0	.0	.0	. 0	.0.		0	- 0	0	0	0	0.	0	0	49	0	.0.	0.	0	.0.	. 0	0	0.	.00
	OccORE 17	×		- O	-0.	.0	- 0.	- 0.	. 0	0	0	0	0		0	- 0	0	.0.	0	.0.	0.	0.	(X	0.	- 0	δ.	0	0	- 0	O.	0.	Ø
Existing Occupancy Schedule	Unt her On- Peak Hrs.			-0	-0-	-0-	14	14	121	27.4	366	809	569		632	929	534	536	584	493	330	233	146	114	801	- 65	.60	2	0	- 0	0	A-674
disting Occup	Oce On- 17	_		0	0	- 0	45	33	- 34	88	125	190	217	9	108	200	167	168	182	154	103	7.3	45	36	26	20	9	T.	. 0	0	0	2,086
B	Total Ban Hours	Н		0	0	-0-	- 61	03	225	359	524	798	912		830	628	701	704	766	647	433	306	161	150	110	88	25	3	. 0	. 0	0	8,760
Ì		9		0	0	0	2	13.	50.	108	174	261	747		295	311	242	237	244	248	132	79	73	81	37	21	1	0	0	0	0	2,920
ŀ	-10 Hours, 17	А		-0	0	- 0	1.1	- 178	167	216	267	316	289		248	288	168	212	192	163	.05	89	310	57	20	9	0	0		0	0	2,920
ŀ	01-138 Hours (19-24 Hours	3		. 0	0	0	g	-0	8	35	83	221	279		287.	280	291	255	330	236	206	159		45	53	28	24	m	0	0	0	2,920
ŀ	M.C. Cathalpy Sturbina 01-	Q.		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-0.0	
anbury, CT	MCWB E	2		0.0	0.0	0.0	76.2	73.2	69.5	65.3	62.4	30,5	54.0		48.4	44.8	41.5	38.0	33,3	29.6	24.1	31.6	6.01	10.5	6.4	1.9	0.0	0.0	0.0	0.0	0.0	
r Data for D.	Ave Temp M	8		107/5	102.5	576	H	87.8	82.5	77.5	72.5		529				17.5	42.5	37.5	32.5	27.5	Н	17.5	12.3	7.5	2.5	(2.5)	(7.5)	(12.5)	(17.5)	(22.5)	
TMY-3 Weather Data for Danbury, CT	Amb Temp Av	Y	Ц	105 to 110.	100:to 105	95 to 100.	90 10 05	85 to 90	80 to 85	751680	70 to 75	65 to 70	60 to 65	Heating	55 to 60	50 to 55	45 to 50	40 to 45	35 to 40	30 to 35	25 to 30	2010.25	15 to 20	10:00 15	510.10	0.10.5	-5.00.0	-10 to -5	-15 to -10	-2010-45	-25 to -20	

A.H.	TMX's Weather Data for Dombins, CT
1	Occupie biora after isotal latico of TMS
M. P	
0	Concluge = Lot S 1 + LOOD x (F cot B -WS3)), Tractions = Lot S 1 - LOOD x (VS3 - Lot B 1))
×	Configs = cot S + 1,000 x (cot B - W54)), Bashing = cot S - 1,000 x (Y54 - cot B))
on	= Y4/N Y45
-	Cooling = cot Q x (col 11 * cot K 1 + to W + Y47 x Y48
	Identing = MIN([oil I] + [ool K], [ool M] + [ool N], x MIN([ool Q] + internal gains; 0) + internal gains; 0) + internal gains; 0) + internal gains; 10; 10 + [ool M], (their II + [ool K]), x MIN([ool II] + [ool M], x MIN([ool II] + [ool M]) x MIN([ool II] + [ool M]) x MIN([ool II] + [ool M], x MIN([ool II] + [ool M]) x MIN([ool III] + [ool M]) x MIN([ool IIII] +
100	Cooling = col R 3 \(\Left\) Col I 1 + col I I 3 + 1.000 = \(\text{A47} \times \text{A48} \)
	Healing # (Col N * Fool P 3 MIN Col R * internal gains (0) # 18 [col M * Fool M
>	= [col Q] + [col S x [col X]
A.	= (cd R = cd S x zd X
×	= \tau\ \tau \tau \tau \tau \tau \tau \ta
×	Cooking = f od V 1x (1 od 11 + 1 od X 1) = 1,000 = Y42 x Y48
	Isotronia e MING(col II + Leol KI, Leol MI + Leol XI) x MING(col YV + internal games, 0) + Iriq col MI + Leol XI) - Leol MI + Leol XI) - (Isol MI + Leol XI) x MING(col YV + internal games, 0) - 0) - 1,300 + 729
2	Cooling = cot W x (1 cot L 1 + cot L 1 + cot L 1 + cot L 2 x Y 48
	Hesting = ([col N] [col
VV.	= [col T - col Y
Alx	= [\text{cal } \text{f} \cdot
AC	=[.cuT.]-[.cuX]
AB	a (a) [1] . [a) 2]

Assumptions:	Value	Unit	CELL	Description
			REF	
Total Roof Area	14,941	AS	743	per RITP
Roof Replacement Area	8,263	AS	744	Based on independent nothing analysis
Existing Roaf Uvalue	0.0872	BTU/deg F-9	V45	per Buseline Dula
Phyposed Roof Uvidue	0.0500	BTU/deg F-3	V46	Estimated
Existing Cooling Plant Efficiency	2.03	COP	V47.	
Percent Building Cooled	100:090	-	7.48	
Heating Plant Efficiency	75%		V49	per Buseline Dalar

verage Spac	e Jemperatu	res			
	Cooling		Heating	1000	Description
becupied	72.0	W53	73.0	V53	
MOcupied	78.0	WS4	55.0	Y54	

Page 5 of 5

ECM 25: Window Restoration

Putnam County, NY		
Energy and Demand Savings Summar	mary	
Measure ID:	25	
Measure Name:	Window Restoration	
Measure Location:		
Engineers:		

Site Name:		Jail	Bruen	Kern	Summary
Item	Units	Savings	Savings	Savings	
Electricity					
Energy On-Peak	kWh	33	506	417	1,355
Energy Off-Peak	kWh			1	0
Energy Total	kWh	33	905	417	1,355
Demand On-Peak, Monthly	kW				0.0
Demand On-Peak, Annual	ΙŁW				0.0
Demand Off-Peak, Monthly	kW	7			0.0
Demand Off-Peak, Annual	kW				0.0
Fossil Fuel					0
Natural Gas (NG)	CCF	99		971	1,036
Liquid Propane Gas (LPG)	Gallons				0
Steam	Mlbs				0
Fuel Oil, #2	Gallons		1,368		1,368
Fuel Oil, #4	Gallons				0
Fuel Oil, #6	Gallons				0
Solar Value Stack	\$				0
Water					0
Water Savings	kGallons				0
Sewer					0
Sewer Savings	kGallons				0

Putnam County, NV Sheriff's Department/Correctional Facility Energy Savings Analysis

TAIVE	esther Data	TAIY-3 Westlur Data for Dunhury, C.1	-				×	Gisting Over	Existing Overpoory Schedule	ale	Pr	Preprint EABS Opera	perating linura		Existing	1					Ī	history		lf	l		ŀ	Savion	100	ŀ	ŀ	П
Apali Tomp Din deg. F	Ave Temp	A ALCWH	M.C. Embalpy Bits form	03-08 Hours	01-08 Hours 170-to Hours [17-24 Hours		Total Bin.	Our One Peak life	Chicke On. Peak file	Occords. U	Unitos ciff. C	Occ On- Used Posk line - Peak	Lardoc One Oper Peak Une Peak	Ook Off. Unito	Window Trans. Conf. Indoc. Off. Heat Load Peal Tim. (MIII)	law. Window Conf Trans Cool Load Hear Load (II)	UA (OT)	- Oke Westleys Leftlessine he Load (ABB)	Vikkee Winibw Winibw Hillbration Load (MBH)	Oxe Conleng Ban ting Usergy Coresmp. (MMRTC).	Constitute Bon ting Energy Constant (MMRTU).	Window Prome Cont/ Hear Load (MBII)	Under Window Durs. Conf. (MIII)	A (UII) In	Ove Window Milhradon Load (MIM)	Under Window Co Midention for Load C (AIIII) (A	Cocling) Rea Control Engl Discrept Tring Control Co. Co. Control Co.	Under Coulong Bay Ting Energy Consump Say (MMITTU) (MM	One Us Cooling Co Savings Sa MMFRUS (MS	Unthe Cooling He Savings Sa MMETU) (MM	One Understand Savings	Undec Realing Savings MARITU
V	9	0	q	3	4	9	н	-	3	3	1	M		0	0.	8	×	1	-	1	"	X	,	7	VV	3AB	AC	(dv	AE	AF V	VC.	MI
Cooling																-													ŀ	H	-	
105 to 110	0 107.5	0.0	0.0	D)	0	0		0	0	0	0	0	0 0	0	D. I Town		32		*	0	0.	141		92	-	-	0	. 0	.0	0		
100 to 105	5 102.5	0.0	0.0	.0	0	.0.	0	0	0	.0	-0-	0	0 0	0 0	E	eu	Z	. 3	ės.	0	0.	-2		共	_	-	0	0	.0	-0.	_	
9510-100	6 97.5	0.0	0.0	- 0	. 0	d	9.		0	0	0	0	0	9 0	69	-	120	2	2	0 .	d	3	-	40	-	1	9	-	0	9		
- 99 to 95	92.5	76.2	0.0	- 0	17	74	- 61	10	0	0	.0	13	4 0	0	0	-	250	2	-	0	-0	2	-	-92	1	_	. 0	0	.0	0		
85 to 90	87.5	73.2	0'0	- 0	80	13	- 63	- 63	0		. 0	25	18 0	0 0	1	-	84	I	1	0	. 0.	1	1	- 16	1	0.	0	0	0	0		
80 to 83	82.5	69.5	0.0	*	101	30	225	2225	0	0	0	182		0 0	1 0	.0	13	-	0	0	D	1	0	92	0	0	0	0	0	a	-	
75 to 80	H	65.3	0.0	.35	216	108	359	359	0	0	-0			0.0	0 0		8.1	-0-	.0	0	0	. 0	. 0	92	0	0	0	9	0	0	_	
70 to 75	72.5	62.4	0.0	88	267	174	524	- 524	0	0	0		100		0		8.7	0	.0	0	0	- 0	.0	- 20	0.	0		0	0	0		
65 to 70	67.5	5.65	0.0	123	316	361	208	798	0	Q	-0	1	152 0	0	0	0	32	0	D	0	0	0	0	94.	0	.0	0	0	0	in in		
- 60 10 65	62.5	549	0.0	379	289	#	215	216	.0	. 0	0	738	174 . 0	0	0	.0	I	. 0	0	. 0	0	-0-	0	18.	0	0	. 0	0	0			
Heating										2		1																				
35 to 60	57.5	484	0.0	282	248	295	830	830	0	. 0	0	672	158	0 0	(1)	0	132	·(1)·	o	0 .	-0	(4)	9	76-	(0)	.0.	0	0			0	0
30 to 55	52.5	448	0.0	2303	288	311	879	828	0					.00			- 81	(12)	(D)	4	- 0	(1)	(0)	32	(0)	(0)	1.	0				0
45 to 50	47.5	41.5	0.0	160	368	242	102	701	. 0	. 0	. 0			0. 0		6	98	- 600	(0)	1	0	(2)	(1)	- 92	(1)	(0)	1	-0			0	0
40.00.45	H	38.0	0.0	557	212	237	704	704	.0	. 0	0	570		0 0			8.9	(2)	(1)		0	(2)	(1)	92	(0)	(0)		0			_	0
35 to 40	37,5	383	0.0	310	.192	344	760	766	0	g	(0)			0			8.0	è	(1)	. 5	0	.(2).	(1)	.92	(1)	-(0)-	94	0	,		1	ö
30 to 35	32.5	29.6	0.0	296	163	24%	FH7	647	. 0	0 .	0		123	11 11	(3)	-	22	(3)	(0)	6	0	(3)	(3)	92	(3)	(0)		0			_	0
25 16 30	37.5	24.1	0.0	206	56	135	-433	433	.0	0	0	H		0			Z	(3)	(3)	6	.0	(3)	(3)	18	(1)	(1)		0				0
2010-25	22.5	33.6	0.0	7657	- 68	120	300	300	.0		0	248	0 85		(4)		72	0.00	(2)	'n	0	(60)	(2)	je.	613	(1)	1	0			-	0
15 to 20	17.5	£6.9	0.0	19	. 31	73.	161	161	-0	. 0	0			0 0			22	(3)	(2)		- 0	(4)	(3)	-92	(1)	(1)	1	0			0	0
19 to 15	12.5	10.1	0.0	45	- 57	87	150	150	0		.0	121		0 0			84	(4)	(3)		- 0	(4-5)	(\$)	192	(1)	(1)	1	-0			0	0
540 10	7.5	6.6	0.0	- 53	20	37	110	110	. 0	0	0	68	0 12	0 0	(5)		13	(4)	(3)	-	0	(5)	(4)	92	(2)	(1)	-	0			.0	0
0405	2.5	1.9	0.0	.58	9	21	-88	88	.0	0	-0-			0 0	(6)		- 81	(4)	(3)		0	.(5).	(4)	32	(2)	(1)	1	9			0	9
.5 to 0	(2.5)	0.0	0.0	.24	- 0	- 1	.25	25	.0	0	0		9	0			8.7	(2)	(4)	0	0.	. (2)	(4)	92	(2)	(1)	0	.0			.0	0
-10 to -5	(52)	0.0	0.0		· ·	0	*		0	Q	-0-		3	0			25.	(2)	(4)	· W	0	(9)	(\$)	196	0	(2)	0	0			-0	9
-12 to -10.	(123)	0.0	0.0	0	u.	0	- 00	. 0	0	. 0	0	0	0 0	0	(C) (D)		Z	(3)	(14)	. 0	0	100	. (5)	100	(3)	(3)	0	- 0			0	0
-20 to -15	(17.5)	0.0	0.0	0 -	0,	- 0	- 9	0	0		-0-	0	9 0.	0 0	(2)	(9)	花	(5)	(5)	0	- 0	6	(5)	-	(2)	(2)	9	0			- 0	. 0
-25 to -29	(22.3)	0.0	-0.0	9	. 0	0	0	. 0	0	- 0	-0	0	9 0	0. 1	(8)		155	(9)	(5)	0	-0	- 00	(9)	76	(2)	(3)	0	0			0	.0
						1	-			T. Y.		-																				

	Assungitions:	Value	nu.Y on	7730
				REF
	Total Winding Area		2.651 80	XC.43
	Window Replacement Area		18 18	AC34
	Existing Wendow Uvalue		Orto BITT-deg F-S	SE ACAS
	Proposed Wardow Usulas		0.60 HTC deg I-8	9F.3V S-1
	Existing Window Crack Area		u37 SF	*
	Proposed Window Crack Area		0.15 SF	AC48
	Crack Area Windward Diversity		25.0%	W
	Average Stantings Wind Speed		14.0 MPH.	ACS0 -
MIN([ast I] + [cd K], [ast M] - [cd O] x MN([ast O] + [cd 1] + internal gains, 9) - [cf [cd I] + [ast M] + [cd K] - [cd M] - [cd M] - [cd M] + [cd M] + [cd M] - [cd	Average Winter Wind Speed		7.0 MPH	18:3V
	Proposed Hoting Plant Efficiency		70,1%	ACSZ
od X - Loft P) x XIX (GaR - Lot II - internal game, 0) - II (i) od 1 - Lot A	Percent Budling Cooled		100,001	ACS
	Cooling Plant Efficiency		32.0 EER	ACS
	Cooling Plant Efficiency		3,52 COP.	ACSS.
	Average Space Temperatures			
	Cooling	10	Hesting	
	Ocupied 72.0	4459	70.0 ACS9	L
MINICHAEL DESTRUCTOR OF A STANDARD OF THE PROPERTY CONTRIBUTION OF THE PROPERTY OF THE PROPERT	78.0	4,460	35 0 ACM	H
[God N - Lol P RARN] of Y				-

seamptions:	Value	Toll	CELL	Description
			REF	
otal Winding Area	2,651	-JS	NC.43	
Vinility Replacement Area	施	AS	AC 44	
Mining Window Uvalue	Outr	Brit sideg F-S	ACAS	
repeated Window Usulas	09/0	HTT. deg I.S	9E3V	
Xisting Window Crack, Area	0.37	38	AC#7	
Proposed Window Crack Area	610	SF	AC48	
Yack Area Windward Diversity	25.0%		4C49	
Werage Summer Wind Speed	10.0	NIM.	ACSU	
Werage Winter Wind Speed	7.0	MPII	ACSI	
reposed Heating Plant Efficiency.	70.1%		ACSZ	
ercent Bindling Cooled	100.0%		ACS	
coding Plant Efficiency	32.0	EER	ACS	
coding Plant Efficações	3.52	400	ACSS	+ACS4/3/4B

Page 2 of 4

1																															
	Josh Temp Ave Temp On deg F				meto Houn	(7-24 Illoun						Oce On- Peak Line	Undoc One Peak Unio			Occ. Window. rans. Conf. Tr. lear Load. B. (SDIII)												Under Cooling Back ing Eaceny Consump (MMDTU)	Osc. Ceoling Savings (MMFIII)	-	
	A B	9	q	¥	4	0	н	-	77	N.	7	W	×	o	- L	0		×	1		4	3	, x	8	W	AB.	VC	gy	AE	AF	900
10 10 10 10 10 10 10 10	ш	0.0	0.0	5	= 0	0	= 0	0	9	0	0	0 0	0.00	0	= 0	47	H	1,610	H	H	+	H	H	H	H	2	0	0	0	0	Ī
1	1	000	000													11	1	1610	+	+	+	+	ł	+	+	100					İ
1	1	76.2	0.0	9	17	1	10	4	14	0	0		11	0	0	10	t	1,610	+	19	0	0	+	t	+	15	9	0	0	0	t
1	1	73.2	0'0	0	80	13	-93	12	12	0	0	30	19	- 0	.0.	256	H	1,610	-	9	0	1	H	ŀ	ŀ	-11	9	0	0	-	Ī
1	L	69.5	0.0	8	167	30	225	15	171	0	0	15	151	0	0	17	17	1,610	-	32	0	1			-	8	0	-	0	-	Ī
1	L	65.3	0.0	36	216	108	359	28	274	0	-0-	811	241	.0	-0-	- 6	H	1.610	-	11	0	-			H	+	0	0	0	-	Ī
1	H	62.4	0.0	88	792	174	524	125	664	0	0	172	352	0.	- 0	- 10-	- 1	1,610.	2		. 0	0	T	1,13		0 .	0.	0	0	- 0	
10 10 10 10 10 10 10 10	Ĺ	5.65	0.0	121	316	361	208	190	KO9	Q	-0-	251	537	0.	0	0	-	1,610	0	-	-	-	0	1.13	-	.0	0	0	0	ū	Ī
1	Ц	54.9	0.0	279	. 289	#	515	217	695	.0	0	299	613	0	-0-	0	4	1,610	.0		1	9 0	0	1.13		0	0	0	0	. 0	
1	ing																1														
Column C	L	484	0.0	282	248	- 505	830	867	632	.0	- 0	272	. 888	- 0	.0	(23)	0	1,610	(31)	0		4	69.	1.13		.0	9				0
1		49.8	0.0	2303	288	311	879	209	678		- 0	288	166	.0.	.0.	(31)		1,610								(1)	.0	. 3			9
1	L	41.5	0.0	Jou	391	242	201	167	534	. 0	0	229	472	. 0	.0	(36)	0	1,610		0	1		110	1		(+)	.0	7			. 0
1	_	38.0	0.0	555	212	237	704	891	536	0	0	230	474	0	. 0	(43)	Ü	0197	ĺ	(22)				Ţ	Į.	(0)	0	13			0
1		383	0.0	310	7.00	244	760	182	584	ū.	101	251	:315	.0.	0	(96)		1,610		(32)							0	30.			0
13 13 13 13 13 13 13 13		29.6	0.0	236	163	248	647.	151	193	0 -	0 .	212	- 435	.0		(64)	1	1,610		(4K)	4		-	-		1	. 2	22			
1		24.1	0.0	206	56	132	-433	103	330	0	0	142	162	.0	0	(72)	j.	0197		(36)	45		1			1	è	1.0			5
1 1 1 1 1 1 1 1 1 1		23.6	0.0	7627	- 68	7.0	306	7.3	233		0	100	306	0		(80)	1	Listin	(1000) t	(69)	95							1.5			-
1. 1. 1. 1. 1. 1. 1. 1.		16.9	0.0	- 19	. 31	73.	161	45	146	- 0	0	63	128	- 0	.0	(88)	1			(88)	90						- 2	- 11			3
1		10.1	0.0	45	- 57	20	150	36	114		. 0	- 49	101	. 0	.0.	(36)				(36)	7					(2D)	2	10			1
1	0.10	6.4	0.0	- 53	20	37	110	320	- 84	0	0.	36	74	.0	.0	(104)				1010						-					2
1 1 1 1 1 1 1 1 1 1	-	1.9	0.0	.58	9	21	88	20	. 65	0	-0	28	. 22	.0.	.0	(112)	- 1			1120	8						-				7
1	4	0.0	0.0	24	0	1	25	0	10	0	0	N	17	0	- 0	(120)		1,610		123)	-	5		+	-	1	1				-
Company Comp	1	0.0	0.0	-	4	0		-	2	9	(D)			0	0	(128)	+	0197		(34)		9		1	1	(3)	0	0		I	0
1.	4	00	000	q	0	0	-	0	0	0	0	0	0	0		(136)	+	Tello		1	0	9		6) T. I.A	(42)	(H)	0	- 0			0
Commonly Commonly	1	000	0.0	9 9	9	0	0	0	0	20		0 0	0	0	0 0	+	+	+	-	+	+	t	+	+	+	+	0 0	0		Ì	9 9
1, 2, 200 2, 200	1															t	H	H	H	-	H	t	╀	t	ŀ	H					
This Wester place This	11.	-		2,920	2.920	2,920	8,760	2,000	6.674	.0	0.0	2,868	5,892	- 0	.0.	7						45					(3	141	1		63
					Ì	r			l			ľ	ì																		
March Water the mailtain of March Water and the mailtain of March Water the mailtain of March Water the mailtain of March Water the mailtain of March Water the mailtain of March Water the mailtain of March Water the mailtain of March Water the mailtain of March Water the March Water the March Water the March Water the March Water the March Water the March Water the March Water the March Water the March Water the March Water Water Water Water the March Water Wate	Ť																					i		Assum	9thens:		Value	1 ult		Jeserfpilon	
Volveyde black and the state of the state	Ī	same Data for	r Danbury, CT																										REF		
Proposed National Actions of the Action State of the Continue of the marking of the State of the Continue of the marking of the State	Ownpedly	num affer inst	tallation of EX,	35																		Ô		Fotal W	indiw Area		1,387		16:43		
Coding C	- P Operation 4	mary affairms	Dillation of EX	25																		1		Winder	v Replacement	Arra	1,887				
CACHI CACH	Confing	ailS - La	OURT COLB	- AA59 IL B.	atmy - and S	THE PARTY OF	(ACS9-1 col	B()):																Evisting	g Wendow-Uva.	ne	0.85	HTL (dog F-5	_		
Activity of the Activity Contact (1997) Activity Contact (1997)	Ceoling =	col S = 1.0	90 x (col B	- AA60 (), H.	dting - col S	1,000 %	AC60 - col	6 (3)														1		Propose	od Window U.y.	dine	090	HTL deg I-8	4		
Conting transfer which will find the best part of the b	AC44.x	AC-45					,															1		Existing	Window Crack	K.Arca	1283	N.	AC 4		
Coming Color Col	Existing or	copied a rade	w infiltration i	scatter foads	STREET)																	1		Hopos	d Window Cra	CK Area	301	35	AC48		
	Cyteting to	HACCUDAND WITH	aless intiffratio	on Incidence lives	(Aligh)	715C 2 A116																1		CTACA	CICH WINDWING	Mernin	200		VC-50		
Control of St Oct Column Hadima A	Ministral II	Inot K froit	-11	Attivition (a)	Total 11 to	Steamed Contract	d leatest and	To Lost Williams	September 1	M. Office II . I.	and Kitter Hand		owner the	the first training	disconditioning.	NAME OF STREET	17.74				1		Average	Winter Wind	Name of the last	7.0	THE PERSON	NO.			
Column Figure F	Continue	Louis Hall	Set 111 set 1 s	1-	T 1 - 1 000 - A	CSS 6 ACS	T.	indian las	The same of	Cinal licens	To Control of	The latest and the la		o malleman	The latest and the la	Country States	ALLES THOMAS	1000						Personal	of Heating Plans	- Erfermen	70,000		CS-JV		
Couling Plant Biblicaccy 3.20 [ERF ACSS ACS	Heating	ola Nho	SIP DEMIN	0 - 8 00	III To Internal	gams, (0) +	If (cold) +	col KI - In	JM1 = [pol.	D.L. ((1 col M	Tel col O II.	G cold = [io	12	(1 cd () [-] p	of T winters	al gains (0)) =	1,000 = MC52	i v				1		Percent	Budling Cook	P	10000		ACS		
	Closto	x Spo =	100(21)																					Cooling	Plant Efficien	96	12,0	EER	ACSI		
Arch 4 A, Arch 4 B, Arch 4 A, Arch 4 B, Arch	(col R	1 Col S x	(1210)																					Ceoling	Plant Efficience		3,52	- 400	36.26	ACS4 3.413	
Average September Aver	- ACM 9.	AC46																						1							
Profession Pro	Proposed o	scentised winds	ow tetilination	beating leads	MHH)																			Averag	e Space Temp	cratures					
Aconting 1 Acon	a passodout	THE COURSE WE	ONDOWN SHIRITARY	on boutstip int	as joint																	1		1	+	- 1	+	-1		усыставняя.	ı
Configuration Configuratio	Conting	Est X	DIN AA BAC	5011 1 50	K 1 = 1,000	ACSS & AC	.53	1000				1	I.		1			The same						Overson	+	- 1	1	4			
Section	A STREET STREET	ALINI CHILL	Cont Att 1 Cont.	MI - CHICAL	A MINISTER A	VV 66 TV	Within the	10 Tal and 10 Tal	THE CHAP	COLUMNITION	Olympian i	CHILD IT (ID	ā	DA MING DIE	T = DM AB			JAMES ALCOLO						CHOKE	1	н	1	J.			
1 at W 1 at A D	Morring	Total No. 1 of	OF DAY AND	Look Vitalia	A A D I . dottom	Manager DV	A 1107 AAT 1	TAME I	COUNTY OF LAND	TOTAL CLASSES	ATT-A CALLO	Targetti at		Wilder Table	Act A.A. T. a.so.	Sheat mint	St. Times A.A.	6969				1									
A P. A	The Park In Park	LON ACT	Mary II wall to	The latest	A ART LANGE	or Same, or	THE STATE OF	TWO I	ACT TO THE STATE OF	A CALL CALL CALL	W. L. Land	1 100		T COME IN	SOLVAY TA	WHITE DATES	THE THURS IN	Thoras				1									
P. IA	While	LAN ADL																													
		-Lost AC L																													
	What = .	- Lool AD																													

Colf Ref.	Countril	Assumptions:
3.11	[VMS-3 Weather Bass for Dambary, CT.	
7.5	(Schusted hours alles insulatation of FMS)	Total Windiw Area
M-P	Overstage frumvalter installation of TANS	Window Baplacement An
0	Cooling = [an S] = LNO x [t od B] - AA59 3. Hazing = [ad S] = 1.00 t x [t od B] - AA59 3. Hazing = [ad S] = 1.00 t x [t od B] - AA59 3.	Existing Wendow Uvalue
÷	Cooling = [col S = 1,000 x ([col B = AAA01), Honting = [col S = 1,000 x ([col B = AAA01), Honting = [col S = 1,000 x ([col B = 1,000 x ([col	Proposed Window Usulin
S		Existing Window Crack, J
	Extering excupated to index infiltration learning loads (ATIRI)	Proposed Window Crack
	Existing unoccupied window in filtration healting loads (MBB)	Crack Area Windward Dy
	Coding = (1 col Q 1 = 1 od T 1) x (1 col I] = 1 col X (2 col I = 1 col I T) x (1 col I = 1 col I T) x (1 col I = 1 col I T) x (1 col I = 1 col I T) x (1 col I = 1 col I T) x (1 col I = 1 col I T) x (1 col I = 1 col I T) x (1 col I = 1	Average Stammer Wind S
	Thaning Mixted II s too K. Lat M. [and K. Lat M. [and D. S. Mixted Observation and paints, D. S. [and M. S. S. Lat M. S. S. Lat M. S. S. Lat M. S. S. Lat M. S. S. Lat M. S. S. Lat M. S. S. Lat M. S. S. Lat M. S. S. Lat M. S. S. Lat M. S. S. Lat M. S. S. Lat M. S. S. Lat M. S. S. Lat M. S. S. Lat M. S. S. Lat M. S. S. Lat M. S. S. Lat M. S. S. S. Lat M. S.	Average Winter Wind Spy
M	Confing = (Loid R = Loid L1 3 C ad J = [Loid L1 3 Lid L2 3 Lid	Proposed Heating Plant F.
	Meaning - (Lot M.) - Lot P. NAIM, Gold E. - Sold II - In the company games - (0) - EP Onl II - Lot M. R. - Lot M. R. - Lot M. M. - Lot M. -	Percent Budling Cooled
,	-([ed 0] = [od 5] x [ed Z])	Cooling Plant Efficiency
	1 (or 8 1 1 or 8 1 x or 1 or 1 or 1 or 1 or 1 or 1 or 1 or	Cooling Plant Efficancy
	+ ACH # ACH	
17	Proposed occupied wandow, Infiltration bearing (wate)	Average Space Tempera
All	Proposed unscrepted virtuals and illitration housing links (AH1)	Coolin
	[Confing et [and X] + 1 and AA] 3x4 [and H F = 1.000 + ACSS x.ACSS.	Ocuped 72.0
	[Dating * MIN([sd.1] + [sd.K], [sd.K], [sd.K] + [sd.MN][sd.K] = [sd.AA] + usternal game, D) = IN([sd.1] + [sd.K]) + ([sd.K] + ([sd.K]) + ([sd.M] + [sd.K]) + ([sd.M] + [sd.M]) + ([sd.M] + [sd.M] + ([sd.M] + [sd.M]) + ([sd.M] +	UnOccupied 72.0
AD	Confing (1 oil Y1-1 cut AB 1) x (1 oil 11-1 cut 11) = 1,000 = ACSS x ACS	
	[Hoding - Gol N 1 - Loof P Da XIVR] col Y 1 + Lood AB 1 - internal gains, 0.9 + [Fig.col II +] col K 1 - Col O 1 - (Gol M 1 - Col O 1 - (Gol M 1 - Col O 1 - (For IVR) col N 1 - Col O 1 - (Gol M 1 -	
AE	= told V = told AC	
N)	= total AD total AD	
AGE	= tath V - or AC	

examplifons:	Value	Luit	CELL	Description
			REF	
otal Westing Area	1,887	- 18	AC.43	
finitive Equinoment Area	1,887	48	AC34	
visiting Wendow Uvalue	0.85	Brit sideg F-S	ACAS	
represed Window Usulas	09/0	Bril deg I.S	9£3V	
Xisting Window Crack Area	12.83	SF	ACT	
roposed Window Crack Area	3.01	SF	AC48	
rack. Area Windward Diversity.	25.0%		0F3V	
verage Stammer Wind Spend	10.0	MITH.	ACSD	
verage Winter Wind Speed	7.0	MPII	ACSI	
reproof Hotting Plant Efficiency.	79,0%	1	ACSZ	
ercent Bindling Cooled	- DO:09-		ACS	
ceding Plant Efficaciocy	12,0	EER	ACS	
Cooling Plant Efficiency	3,52	400	ACSS	-ACS4/3413

Putnam County, NY Kern Building - Heath Dept/DMV/WIC Energy Savings Analysis

	Crist	Catating Overpracy Scholals	y Schredule		Preprint EATS Open	Sperating Hours	6	Cuisting				ľ	l	Pro	passada,	ŀ					Savions			
99	Total Bin Occ Hours Peak	Out One Codos On Post line - Nest line	Children On Oce Offi- Peak film Feak film	n. Ustoccotti.	Occ On- Low Post line Pe	Unidoc One Oce Neal Ulin Peak	Ook Off. Unito	Occ. Window. Trans. Conf. WinDoc Off. Hear Load (ADH)	Unthe Window out Trans Cool and Hear Load O (MBD)	UA (BILDIO Meg. D)	(Mc Window Infiltration 1 Load (MBH)	Virkee Window Ci Indibation in Load (MBI)	Oxe Cooling Usin Ci- ting Usargy 100 Common Ci- (MMITTU), (3)	Conting Ben Writing Uning Uning Uning Thin Commune Ho	Our Uhindhav Whith Phanes Could Dismass Could Dismass Chang Ugan Could Ukan Coll Could Ukan Coll Could Ukan Could Could Could Ukan Could C	Uncker Windows berrs. Cond (best Load. U.A.() (MIII) des	Who Man Justin As E) (M	Chec Uniber Winshow Winshow Infiltration Infiltration Load Load (MIMI) (MIMI)	two Cooling) Baddien Drg Jacopy d Consump d Consump	Uncker Hea Cooling Bar ng Energy the Consump Us (AMOTU)	Dec. Conding.	Unifica Cooling Savings (MMBITU)	Occ. Heating Savings (MMRRL)	Unidea: Heating Savings (MSUUTU
F	н		4	7	M	×	0	0	a	8	1		1	11	X		7	AA AB	JV 1	QV.	W	AF	AG.	MI
ı					-											-								
=	7	0	0	0	O		0	01 10	- 6	292	華	150	0	0	2 2	9	_	**	0	g	.0	-0		
0		0 0	0.	-0	0		0		4	262	30	31	0	0	9		21.1	-	0	0	0	-00		
9		0 0	0	0		. 0	9 0		9	292	33	23	0	0		7		-	0	0	.0	. 0		
10	10.	14	0 0	0	9	13.	0 0	9	4	202	32	10	0	-0		3	-		0	0	0	0		
-93	93	12 12	0	0			0 0	6	3	292	93	12	0	. 0	E	1	1112	-	a	0	0	0		
225	H	171	0 1	0.	H		0 0	0 3	-	292	19	. 9	0			2	-	0		0 -	.0	- 8		
359	359 8	H	. O	-0			0. 0		0	292	-6	0	.0	-0'	1	-		0	0	9	0	-0		
524		125 399	0 6	0	171	352	0	0 0	0	292	1	0	0	0	2	0 2		0 0		0	0	- 0		
862			0. 86	-0			0	0	0	292	(0)	D	0	0	0	.0		0 0	0	0	0	- D		
515		317 695	0 50	0		613		0	.0	202	0	. 0	. 0	0	0 -0	0	311	0	0	0	0	- 0		
830		18 632	12 0.	0	H	866		(5)		292	(14)	. 0	. 0			-			0	0			-0	-
879	879 20	209 67	.00	- 0	2300		00	(9)		262	(18)	(2)	. 0	er.	(4)		-	(1) (0)	.0	1			- 6	eri
102			0 - 11	0			0. 0		6	292	(23)	(7)	. 0			1			.0	1			. 0	4
704	704 16	968 890	.0 .91	0	H		0			292	(22)	(11)		10					0					8
760		182 58	H	0	H		0			292	(32)	(16)	3	13					-	*				12
647		154 493	0 E	0	-		0	(12)		292	(36)	(30)	3	17	(6)				T	4			-3	(3)
-433			0 00	0			0			262	(41)	(32)	160	14					-	. 3				111
306		73 23	.0	0			9. 0	(15)	-	292	(45)	(50)		12					1	Y.			- 2	.6
161	101 45	346	0 9	. 0			0 0	(16)		202	(30)	(34)	81	91		-			0	e			2	
150	. 34	36 114	0 4	. 0			0 0	(18)		7.62	(54)	(38)	-	*					0	-04			2	9
110		26 84	0 .	0.			0	(49)		292	(65)	(43)	14	9	-					-			1	ý.
88	88	20 . 65	9 9	0	28		0	(21)	H	292	(63)	(47)	-							-			_	. 4
25	25.	AI.	0 0	0 .		-	0	(22)	-	292	(X9)	(25)	0	N				-	10	0			0	-
*			Q	(0)	1			0 (24)	H	292	(23)	(96)	0	0				-	0	0			0	-0.
=	0 0	0	0	0	0	-		0.25	-	202	(11)	(19)	. 0	-	-		(0	0			0	0
9		0 0	0	. 0	. 0	. 0.	0 0	(92)	(21)	292	(84)	(65)	. 0		(61)	(15) 2	511	(4) (3)	0	0			0	0
0	0	0 0	0 0	0 .	0	. 0	0 0	(28)		292	(80)	(30)	- 0	. 0	(20) (1			(3)	0	-0			-0-	.0
			100																					10

	١
350	[TMY-3 Westlete Date for Dankery, U.7
1-1	Obliging from allto invalatation of FMS
M-P	Oversting frams of the installation of TAMS
0	Confing = [cat S = LNOt x, U clot B - AAS9 3, Blatting = [ast S = 1 finite x (AC9) + [cd B)).
×	Cooling = [cot S] = 1,000 x ([cot B [- AAM), Hotming = [cot S] = 1,000 x ([cot B [- AAM), Hotming = [cot B]))
S	AC44 x AC45
-	Extering occupied window infiltration learning flows (ARSF)
2	Existing any control of virulovi in Planting Issue (ARPI)
	Cooling - (Lool Q 1 - Loof T) x (Lool I) = Look X x x x x x x x x x
	[harbing = MIN([old 1] + [cold K], Lold M1 - [cold O) x MIN([old O) - [cold 1] + internal pains, D) - [Fit] cold M1 - [cold M1] + [cold K], Lold M1 - [cold M1] +
W	13
	[Acadimy = (Lot X + Lot P XXIX(G cd R + Lot V + mornal game = 0 + E(lot V + Lot V +
×	-(TottQ)=TottS x[ottZ])
	- (Lonk Lonk
7.	= XC44 x XC46
W	Proposed occupied window hillination bearing looks (A(U1))
All	Proposed unoccupied virtulation that the proposed of the proposed virtual and all the proposed unoccupied virtual and the proposed of the proposed of the proposed virtual and the proposed of
	Conding = { Lab X -1 and AA 3 of Lab H -1 and K 1 = Lobb - AC33 s AC33
	[Bathing = MIN([solt 1] + [solt M] - [solt M] + [solt M
AD	Conhig < (Leil Y1 - Teil AB L) x (Leil L1) = 1.000 = AC55 x AC5
	Hotting - (1 ool P. 1) x MN(q col Y 1 = 1 ol A B 1 + internal gains, 0) + HQ col 1 1 1 ol A B 1 + internal gains, 0) + HQ col 1 1 1 ol A B 1 1 1 1 1 1 1 1 1 1
AE	= tot V = tot AC
W	= od W (tota AD)
17.7	Of the last of the

swampfilms:	Value	Turk	TIAD	Description
			REF	
otal Winding Area	016	-18	AC.43	
Vindow Replacement Anna	352	AS	AC34	
Misting Wendow Uvalue	683	B-11 gaby 1731	AC45	
repeated Window Usulas	090	BTU deg I.S	9E3V	
Xisting Window Crack Area	5.40	SF	AC#7	
roposed Window Crack Area	0.24	SF	AC48	
rack. Area Windward Diversity	25,0%		AC49	
Werage Summer Wind Speed	10.0	MIN.	ACS0.	
Werage Winter Wind Speed	7.0	MPII	ACSI	
reproof Hosting Plant Efficiency.	T5,2%		ACSZ	
ercent Budling Cooled	100.0%		ACS	
coling Plant Efficiency	10,01	EFR	ACS	
coding Plant Efficiency	2.93	400	ACSS	- ACS4/3/413

ECM 26: Move Register

Putnam County, NY	
Energy and Demand Savings Summary	
Measure ID:	26
Measure Name:	Move Register
Measure Location:	
Engineers:	

Site Name:		KoehlerSr	Summary
Item	Units	Savings	
Electricity			
Energy On-Peak	kWh		0
Energy Off-Peak	kWh	0	0
Energy Total	kWh	0	0
Demand On-Peak, Monthly	kW		0.0
Demand On-Peak, Annual	kW		0.0
Demand Off-Peak, Monthly	kW		0.0
Demand Off-Peak, Annual	kW		0.0
Fossil Fuel			0
Natural Gas (NG)	CCF	932	932
Liquid Propane Gas (LPG)	Gallons	0	0
Steam	Mlbs	0	0
Fuel Oil, #2	Gallons	0	0
Fuel Oil, #4	Gallons	0	0
Fuel Oil, #6	Gallons	0	0
Solar Value Stack	\$	0	0
Water			0
Water Savings	kGallons		0
Sewer			0
Sewer Savings	kGallons		0

Putnam County, NV William Koehler Senior Center Move Register					
TAN'-3 Weather Data for Danhory, CT	Existing Ovennancy Schudule	Existing Heating/Cinding Schotnle	Existing Motor Operating Schridde	Bylsting	Proposed

TMV-3 West	ther Data fit.	TMV-3 Weather Data for Danhory, CT	+				100	Existing Ovenpaney Schoduly	taney Schrift	ulte	Pice	Existing Heating/Cooling Schools	Couling Sch.	edule	Ector	ing Motor Op	Kelsting Motor Operating Schribble	tulo	Existing				Proposed							×	Savings		П
Amb. Temp Din deg. I	Ave Temp des f	MCW II	ALC Embalpy Btu-lbma		01-08 Hours (m-16 Hours (7-24 Hours	7-24 Hours	Total Bin	Occor.	Unities On- Peak IIIn	Oce Off. U	Unique Onli. O	Occura. Use Yesk Ilon. Pel	Carbor On Door	94	inthe fift. Dee	Oce On - Uniter	Under the Occord. Post for Peak file	Office Trinds of The Peak Ho.	Occ Cod Off. Heat Load (AUII).	TinOse of Cool Hose of Lond	Ose Coeding lie cas ating Docygo Coesamp OMBETTO	Undoe for Coading He go aing Energ p. Consump.	Oce On Peak He	Unities On- Peak Illin	Occ Offi- Post Hos	Uniboctoff. Peak Illin	Occ. Coul. (Cool (lear Cool) (lear (MMI)	Occ Cooling He o ating Energy a Consump.	Unidos Cesting Ha ating Energy Constants (MMITIU)	Cooling Unergy Savings MMBRU)	HVAC Electrical Savings (kWh)	Heating Energy Savings MMBRU)
V	- 13	3	- G	- E	4	9		1	7	K	T	M	×	0		0	R	1	17	A	. 11	X	. A	Z	W	AB	VC	AD	AE	AF.	WG	HW	W
Cooling																																	
105 to 110	107.5	0.0	0:0	0	0	0	0	0	.0.	0.	0	0	0	0	0	0	0 0		1.341	1.178	0	9	0	0	0	0.	1531	1,178	.00	0.	0	0	
10040-105	102.5	-0'0	0.0	.0	-0	.0	-0-	- 0	.0	. 0	0	0	0	. 0	0	0 0	0 0	9		H	0	0	0	- 0	0	. 0.	1,387	1,060	.0	-0	0	0	
001 Htsp:	120	0.0	00	. 0	0	.0	.0.		0	- 0	. 0	0	. 0		0	0	0 0	0	1,233	TEG	u.	c	- 00	0	0	00	1,233	043	o.	20	. 0	0	
- 56 to 95	92.5	76.2	0.0	.0	-17	74	19	50	111	- 0	- 0	09	11	0	0	8	II 0	0	1,079		. 3	2	8		.0	0.	1,079	825	3	61	0	0	
85 to 90	87.5	73.2	0.0	0	- 98	13	63	42	- 51	- 0	0		- 15		0	42 5	91 0	0	924		- 11	- 10	42	- 15	.0	- 0:	924	202	11	- 07	0	.0	
30 to 85	82.5	69.5	00	×	167	86	225	100	125	0.	0	100	125	0	0. 10		0 571	0	770		777	21	100	125	0	0.	770	589	22	.21	. 0	.0	
25 to 80	77,5	68.3	00	33	216	308	359	160	661	- 0	.0	160	- 66	. 0	0 16	61 991	0 061	0	- 616	121	38	55	160	199	0	- 0-	919	471	28	77	.0	0	
70 to 75	72.5	02.4	0.0	. 83	282	174	\$24	234	290	. 0		234	2500	. 0	0 2	234. 29	290. 0	0	462	353	31	53	234	290	0	- 00	298	353	31	.20		0	
65 to 70	67.5	505	0.0	. 221	316	261	208	350	142	- 00	- 0		442	0	3		442 0	.0.	368	236	31	30	356	112	- 0	. 0	30%	23/	3.1	30	. 0	10.	
(0) (0.65	62.5	54.9	-00	279	289	344	912	402	505	- 0	. 0	Н	505	. 0	0 40			0	154	118	- 48	-17	- 401	305	0	- 00	154	811	18	17	0	0	
Heating												1																					
55 to 60	87.8	48.4	0.0	287	248	295	830	3.51	459	0	0	371	159	. 0	3.	321 45	450 0	0	(123)		0	10:	371	459	- 0	.0	(103)	. 0	100	- QX		0	0
50.10.55	52.5	-44.8	0.0	280	288	311	628	392	187	- 0		302	487			392 48	81 0	0	(190)	(27)	0	. 0	392	187	- 0	- 0	(139)	(6)	- 0	0 -		. 0	.0
45 to 50	47.5	414	0.0	162	168	242	701	313	388	.0	0		888	0	31	313 38	988	0	(190)		3	+	313	388	0	- 00	(174)	(22)	0	- 0.			7
40 to 45	42.5	38.0	0.0	255	212	237	704	314	390	. 0	0	314	390	. 0	.0	314 39	390 0	0	(231)	(64)	17	.13	314	390	-0	- 0	(210)	(46)	200	4		- 0	- 18
35 to 40	37.5	33.3	0.0	330	161	244	. 992	342	121	. 0		342	124	0	. 0	342 42	424 0	0	(267)	(82)	35	. 25	342	424	- 0	- 0:	(246)	(64)	25	\$7		0	20
30 to 35	32.5	29.6	0.0	236	163	248	647	280	358.	0.	0		851	0	0 28		358 0	0	(303)	(101)	43	30	380	.358	0	- 0	(281)	(82)	35	.21		0	1.1
23 to 30	27.5	24.1	0.0	206	- 56	132	433	193	2(0	- 0			240	. 0	0.		240 0	0	(338)	(119)	- 38	36	193	240	0	. 0	(317)	(101)	32	20		0	11
20.to 25	32.5	31.6	0.0	139		100	300	177	169			13.7	169		0.00		0. 69	0	(334)	.0333	33	22	137	169	0	00	(353)	(119)	243	×		.0	*
15 to 20	17.5	16.9	0.0	- 67	51	2	161	. 58	106	. 0		_	. 901	0	8	85 10			(410)	-		16	58	106	0	- 0	(388)	(137)	22	14		0	.5
10 to 15	12.5	10.5	0.0	- 45	3.7	×	130	12.0	- 183	χ0,	. 0	7	K3.	0	9 0	8 29	83 0	0	(445)		. 32	15	.29	163	. 0	- 0:	(424)	(156)	21	13		. 0	7
5 to 10	7.5	6.4	0.0	- 83	20	37	110	46	19	- 0	- 0	- 69	19	0	0	9 64	0 19	0	(481)	(195)		.12	49	19.	.0	0.	(459)	(174)	17	11		0	3
0.005	2.5	-61	0.0	- 38	-9	21	-58	38	47	- 0	0	33	47.	0		38 4	47 0	0	(516)	(211)		11	38	- 47	-0	.0:	(495)	(192)	13	-00		-0	2
- 500.0	(2.5)	0.0	0.0	24	- 0.	- do	.25		1.14	0.	0	11:	14	- 0	. 0	11	14 0	0.	(352)	H	5	3	- 13	14	0	- 0:	(531)	(211)	. 5	£.	1	0.	4
-10103-5	(7.5)	0.0	0,0	3	-0.	-0	ei.	0	5	- 0		- J	2	0	. 0	1	2 0	0	(588)	(347)	1	υ	1	. 2	- 0	-0	(995)	(229)	1	- 0		0	
-15 to -10:	(62.9)	0.0	0.0	0	- 0	0	0	. 0	.0	- 00	. 0	0	.0		0	0 0	0 0	.0	(623)	(396)	0	200	. 0	0	0	.0	(602)	(347)	0	.0		0	0
-2010-15	(17.5)	0.0	0.0	. 0	0	0	.0	. 0	.0	. 0	0		. 0	. 0	9	0 0	0	9.	(659)	Ô	0 0	0	0	. 0	0	0	(037)	(392)	0	0		9.	.0
-25 to -20	(22.5)	0.0	0.0	0	-0	-0	-0	0	-0	0	- 0		.0	. 0	9	0 0	0 0	0	(694)	(302)	0.	9	-0	0	0	.0	(623)	(284)	-0	0		0	.0
-				2,920	2.920	2,920	\$,760	iiei	4.849	0	-0	1911	4.549	9	0 3.9	8,4 1168	0 68%	0			400	314	3.91	4.849	0	0.			335	264	.0	0	56
							-																										

A1 - O1 OF -	10000	2010	. 0.00				W.			4		-							10001	1404							1000	(appl)					
-25 to -20	(22.5).	- 670	-00	-0	-0-	. 0	-0-	0	-0	0 0		0. 0	9	0. 0	0	.0	0	0	(809)	(302)	U.	.00	-0	0	0	.00:	(623)	(284)	-0	-0		0	.0
				2920	2.920	2,920 8	8,760	1161	0.849	0 0	0. 39	111 4.8	9 69	0 0	3,911	484	0 6	9			400	314	3.911	4,849	0	-0			399	264	.0	0	925
1						н									k																		
Cell Rof.	Comment																								Assumption	36	Ī	Value	Unit	CELL.	Description		
11-V	TMY-3 Wealt	ter Data for D.	undnuy, CT																											REF			

1-1	Existing Oxenumy, huma.
M-P	Existing Hesting Cooling hours
1.0	Exining Motor Operating Hours
0,	Oxcoprised Cooling and Horling hundt (MBH)
N	Unscripted Cooling and Heating Roads (ARH)
W	Cooling = Telt U [x (1 anl M = 1 all 0]) = 1,000 + ADM:
	Heating = -MIN[ab.1] For KL, Lot M. For Ch. X. Lot M. For Ch. X. Roll of Ch
×	Croling = [cnl R] x ([oil 3] + [oil 1]) = 1,000 + AD45
	Heating = (1 ord Y y cot P y AHN(rol Y z internal gaine v.) = Brit cot H z
Y + AB	Physical Operating Inters.
VC	Proposed Compred Continue Loads:
	Conling = { cot 1 ACM 1 add ACS
	Heating
ΥD	Proposed Universitied Choling and Healing Leader
1	Cooling = (1 cat II 1 - AC61) = (1 cat II 1 - AC56 is 1 cat II 1 - AC56 is 1 cat II 1 - AC56 is 1 cat II 1 -
	Heating = (ToOH II - AEO) - col II - AEO) col IV in too different to account for reduced kinchen and building synthation that to EMSs)
AB	Cooling = 1 old AC 1 x (1 old Y 1 + 1 old AA 1) = 1,000 = AD 3
	Heating = AHN[3641] = [cot K1, [cot Y] = [old AA]); AMN[(cot AC] = instrant gime, 0) = 111[cot Y] = [cot AN] = [cot X] : [cot Y] = [cot X] : [cot
AF.	Cooling = I of AD I x E fool 7.7 + I sel AB 1) = 1,000 + AD35
	Healing = (Lot 2.7 ± tool AB 12 XMX) (sol AB 1 ± mercal pairs 0 = 1F(1 col 1.1 ± 1 col X 1 ± 1 col AA 1, (il col Y 1 ± 1 col AA 1) + (Lot AA 1)
AG	-(toll W = tol X) - (toll M T toll A T
	IIVAC Far and Pamp Savings
W	Cosling - (col 0 - col 2 - (col 1 - col 1)
W	Lifted Will and X Let Load AF 11 cod AF 11

Assumptions:		Value	Unit	CEII	Description
				REF	
Assigned Area		17.97/	.48	ABAB	
Scienting Heating Plant Efficiency	iciency	70,0%		AB44	
Existing Chiller Efficiency		3.5	doo	AD48	
Fan Power		7,4	KW	AD46	
Leating Pump Power		1,3	KW.	AD47	
Carding Panny Power		0.1	W.W.	AD-48	
TiOxy. Fan & Pump Cycling	Shi	10,09€		AD49	% Operating Hours During UnOce.
Picket Kitchen Vent Reduction	hiction	0.0%		050V	% CFM Saved
Pikker Vertilation Reduction	tion	0.0%		ABSt	% CFM Sayed
Average Existing Space Temperatures	emperatura				
W. F. C.	Cooling	-	Heating		Description
Эссирест	72.0	ACSS	75.0	AFSS	
Menginal	-036	95.W	450,00	AE56	
Average Propused Space Temperatures	Temperatur	ř			
	Cooling		Heating .		Description
Xoupied	72.0	VCED	72.0	AE60	
Deminol of the Committee of the Committe	78.0	ACG	55.07	AF61	

	Cooling		Regittig		Description .	
Occupied	72.0	ACS5	15.0	AFSS		
Underspired	280	95.W	450,0.	AV56		
				l		ı
	Couling		- Brailing		Description	
Occupied	72.0	VC60	75.01	AEGO		П
The Comment of	20.0	10.74	41.55	1701		

APPENDIX B: MANUFACTURER SPECIFICATION SHEETS

Manufacturer specification sheets are provided for the following ECMs

ECM No.	Title	Tab
1	Lighting System Improvements - Interior	1
2	Lighting System Improvements - Exterior	2
3	Recommission Energy Management Systems	3
4	Web-enabled Programmable Thermostats	4
5	Heat Timer & Thermostatic Radiator Valves	5
6	Fuel Oil to Natural Gas Conversion	6
8	Variable Frequency Drives for HW Pumps	8
10	Premium Efficiency Transformers	10
11	Vending Misers	11
12	Walk-in Refrigeration Controls	12
13	Steam Trap Replacements	13
14	Infiltration Reductions	14
15	Pipe Insulation	15
16	Boiler Replacements	16
17	Window Replacements	17
18	Solar PV Array	18
19	AHU Replacements	19
20	Plug Load Controllers	20
22	Chiller Replacement	22
23	Siding Replacement	23
24	Roof Replacement	24
25	Window Restoration	25

Investment Grade Audit

This page is intentionally left blank.

Manufacturer Specification Sheets

ECM 1: Lighting System Improvements - Interior

Investment Grade Audit

This page is intentionally left blank.

Recessed

EvoKit LED Retrofit Kit Gen 4

Project	
Location:	
Cat No.	
Туре:	
Lamps:	Qty

Philips EvoKit LED retrofit kit gen 4 is an energy efficient LED alternative to traditional linear fluorescent troffers. Not only does it offer energy savings¹, it also helps reduce maintenance costs due to its long lifetime. Simple construction helps decrease the installation time meaning you can have an LED solution in your ceiling in just minutes. Additional information can be found at www.philips.com/evokit, Products can be found on the DLC QPL by searching the 6 digit product number.

Ordering guide

Product Number	12NC	Description	Watts ³	Volts	Lumen Maintenance (Hrs.) ²	Approx. Lumens ³	Color Temp. (K)	Efficacy	Diffusor
Dimming:	0-10V								
515692	929000781813	EvoKit 2x2 P 23L 17W 835 2 0-10 7 G4	17	120-277	70,000	2300	3500	134	Ribbed
515759	929000782213	EvoKit 2x2 P 23L 17W 840 2 0-10 7 G4	17	120-277	70,000	2300	4000	137	Ribbed
516005	929000783313	EvoKit 2x2 P 32L 24W 835 2 0-10 7 G4	24	120-277	70,000	3200	3500	132	Ribbed
515940	929000782713	EvoKit 2x2 P 32L 24W 840 2 0-10 7 G4	24	120-277	70,000	3200	4000	135	Ribbed
516237	929000785513	EvoKit 2x4 P 30L 22W 835 2 0-10 7 G4	22	120-277	70,000	3000	3500	135	Ribbed
516039	929000783613	EvoKit 2x4 P 30L 22W 840 2 0-10 7 G4	22	120-277	70,000	3000	4000	137	Ribbed
516286	929000786013	EvoKit 2x4 P 36L 27W 835 2 0-10 7 G4	27	120-277	70,000	3600	3500	135	Ribbed
516328	929000786413	EvoKit 2x4 P 36L 26W 840 2 0-10 7 G4	26	120-277	70,000	3600	4000	137	Ribbed
516427	929000787413	EvoKit 2x4 P 42L 32W 835 2 0-10 7 G4	32	120-277	70,000	4200	3500	134	Ribbed
516369	929000786813	EvoKit 2x4 P 42L 31W 840 2 0-10 7 G4	31	120-277	70,000	4200	4000	136	Ribbed
516534	929000788513	EvoKit 2x4 P 47L 36W 835 2 0-10 7 G4	36	120-277	70,000	4700	3500	132	Ribbed
516476	929000787913	EvoKit 2x4 P 47L 35W 840 2 0-10 7 G4	35	120-277	70,000	4700	4000	135	Ribbed
517482	929000798813	EvoKit 2x2 P 32L 24W 835 2 0-10 7 G4 SM	24	120-277	70.000	3200	3500	132	Smooth
517466	929000798613	EvoKit 2x2 P 32L 24W 840 2 0-10 7 G4 SM	24	120-277	70,000	3200	4000	135	Smooth
517508	929000799013	EvoKit 2x4 P 36L 27W 835 2 0-10 7 G4 SM	27	120-277	70.000	3600	3500	135	Smooth
517516	929000799113	EvoKit 2x4 P 36L 26W 840 2 0-10 7 G4 SM	26	120-277	70,000	3600	4000	137	Smooth
517540	929000799413	EvoKit 2x4 P 42L 32W 835 2 0-10 7 G4 SM	32	120-277	70,000	4200	3500	134	Smooth
517524	929000799213	EvoKit 2x4 P 42L 31W 840 2 0-10 7 G4 SM	31	120-277	70,000	4200	4000	136	Smooth
520098	929001747813	EvoKit 2x4 P 40L 29W 840 2 0-10 7 G4	29	120-277	70,000	4000	4000	140	Ribbed
515643	929000781613	EvoKit 2x2 P 23L 17W 850 2 0-10 7 G4	17	120-277	70,000	2300	5000	138	Ribbed
515981	929000783113	EvoKit 2x2 P 32L 24W 850 2 0-10 7 G4	24	120-277	70,000	3200	5000	135	Ribbed
516260	929000785813	EvoKit 2x4 P 36L 26W 850 2 0-10 7 G4	26	120-277	70,000	3600	5000	139	Ribbed
516401	929000787213	EvoKit 2x4 P 42L 31W 850 2 0-10 7 G4	31	120-277	70,000	4200	5000	138	Ribbed
516518	929000788313	EvoKit 2x4 P 47L 34W 850 2 0-10 7 G4	34	120-277	70,000	4700	5000	136	Ribbed

See footnotes on the last page.

EvoKit LED retrofit kit gen 4

EvoKit Sensor Ready (SR) with Philips Advance Xitanium SR for connected lighting solutions

EvoKit SR is a new platform that allows users to choose different control platforms to suit their needs and budget; from simple occupancy and daylight sensing to cloud-connected data-reporting sensing. This empowers users to fine-tune their energy use for reduced energy costs. Various Interact, Philips SpaceWise, and other SR certified controls are available. Please refer to Philips.com/Evokit for details. Contact your Philips representative for a current list of additional approved sensors. Sensors are connected in the field with just a few simple steps:

Step 1: Evokit SR is shipped with a plate covering the sensor hole. There are two wires secured to the back of the plate.

Step 2: The plate can be removed before or after you install EvoKit SR.
Just gently slide the plate to one end and remove.

Step 3. Remove the two wires that were secured to the back of the plate.

Step 4: Take these two wires and insert them into the sensor. They are not polarity sensitive.

Step 5: Insert the sensor back into the hole. The sensor may or may not require a socket.

Product Number	12NC	Description	Watts ³	Volts	Lumen Maintenance (Hrs.) ²	Approx. Lumens ³	Color Temp. (K)	Efficacy	Diffusor
Dimming	SR								
521047	929001753813	EvoKit 2x2 P 26L 20W 835 2 SR 7 G4	20	120-277	70.000	2600	3500	130	Ribbed
521054	929001753913	EvoKit 2x2 P 26L 20W 840 2 SR 7 G4	20	120-277	70,000	2600	4000	132	Ribbed
521062	929001754013	EvoKit 2x2 P 26L 20W 850 2 SR 7 G4	20	120-277	70,000	2600	5000	134	Ribbed
516013	929000783413	EvoKit 2x2 P 32L 25W 835 2 SR 7 G4	25	120-277	70,000	3200	3500	129	Ribbed
515957	929000782813	EvoKit 2x2 P 32L 24W 840 2 SR 7 G4	24	120-277	70,000	3200	4000	132	Ribbed
521070	929001754113	EvoKit 2x2 P 32L 24W 850 2 SR 7 G4	24	120-277	70,000	3200	5000	136	Ribbed
516245	929000785613	EvoKit 2x4 P 30L 23W 835 2 SR 7 G4	23	120-277	70,000	3000	3500	131	Ribbed
516203	929000785213	EvoKit 2x4 P 30L 23W 840 2 SR 7 G4	23	120-277	70,000	3000	4000	133	Ribbed
516435	929000787513	EvoKit 2x4 P 42L 32W 835 2 SR 7 G4	32	120-277	70,000	4200	3500	132	Ribbed
516377	929000786913	EvoKit 2x4 P 42L 32W 840 2 SR 7 G4	32	120-277	70,000	4200	4000	134	Ribbed
521088	929001754213	EvoKit 2x4 P 42L 29W 835 2 SR 7 G4	29	120-277	70,000	4200	3500	137	Ribbed
521096	929001754313	EvoKit 2x4 P 42L 29W 840 2 SR 7 G4	29	120-277	70,000	4200	4000	140	Ribbed
521104	929001754413	EvoKit 2x4 P 42L 29W 850 2 SR 7 G4	29	120-277	70,000	4200	5000	142	Ribbed
516542	929000788613	EvoKit 2x4 P 47L 36W 835 2 SR 7 G4	36	120-277	70,000	4700	3500	130	Ribbed
516484	929000788013	EvoKit 2x4 P 47L 36W 840 2 SR 7 G4	36	120-277	70,000	4700	4000	132	Ribbed
517557	929000799513	EvoKit 2x4 P 42L 32W 835 2 SR 7 G4 SM	32	120-277	70,000	4200	3500	132	Smooth
517532	929000799313	EvoKit 2x4 P 42L 32W 840 2 SR 7 G4 SM	32	120-277	70,000	4200	4000	134	Smooth
517490	929000798913	EvoKit 2x2 P 32L 25W 835 2 SR 7 G4 SM	25	120-277	70,000	3200	3500	129	Smooth
517474	929000798713	EvoKit 2x2 P 32L 24W 840 2 SR 7 G4 SM	24	120-277	70.000	3200	4000	132	Smooth

Commercial Product Name	Order Code
EVO441 wireless transceiver for Evokit	541367

The Philips EVO441 fixture-mount transceiver enables InterAct Pro connectivity in a single, compact package for easy field assembly. EVO441 operates with the established Xitanium SR driver standard to make a simple two-wire connection between transceiver and driver. It can be easily attached to any EvoKit SR (sensor ready), thus eliminating the need for multiple components and auxiliary devices. The result is an InterAct Ready EvoKit.

Commercial Product Name	Order Code
EasySense EVO102	514877
EasySense EVO200	516575

The Philips EasySense fixture-mount sensor is the ideal solution for per-fixture control of new light fixtures. It combines occupancy sensing, daylight harvesting and task tuning in a single, compact package.

See footnotes on the last page.

EvoKit LED retrofit kit gen 4

EvoKit with SpaceWise DT technology

Product Number	12NC	Description	Watts ³	Volts	Lumen Maint (Hrs.) ²	Approx. Lumens ³	Color Temp. (K)	Efficacy	Diffusor
518332	929001709313	EvoKit 2x2 P 32L 25W 835 2 SWZDT 7 G4	25	120-277	70,000	3200	3500	129	Ribbed
518324	929001709213	EvoKit 2x2 P 32L 24W 840 2 SWZDT 7 G4	24	120-277	70,000	3200	4000	132	Ribbed
518407	929001710013	EvoKit 2x4 P 30L 23W 835 2 SWZDT 7 G4	23	120-277	70,000	3000	3500	131	Ribbed
518415	929001710113	EvoKit 2x4 P 30L 23W 840 2 SWZDT 7 G4	23	120-277	70,000	3000	4000	133	Ribbed
518423	929001710213	EvoKit 2x4 P 42L 32W 835 2 SWZDT 7 G4	32	120-277	70,000	4200	3500	132	Ribbed
518431	929001710313	EvoKit 2x4 P 42L 32W 840 2 SWZDT 7 G4	32	120-277	70,000	4200	4000	134	Ribbed
518449	929001710413	EvoKit 2x4 P 47L 36W 835 2 SWZDT 7 G4	36	120-277	70,000	4700	3500	130	Ribbed
518456	929001710513	EvoKit 2x4 P 47L 36W 840 2 SWZDT 7 G4	36	120-277	70,000	4700	4000	132	Ribbed
Air Retur	n								
518316	929001709113	EvoKit 2x2 A 32L 25W 835 2 SWZDT 7 G4	25	120-277	70,000	3200	3500	130	Ribbed
518308	929001709013	EvoKit 2x2 A 32L 24W 840 2 SWZDT 7 G4	24	120-277	70,000	3200	4000	133	Ribbed
518357	929001709513	EvoKit 2x4 A 30L 23W 835 2 SWZDT 7 G4	23	120-277	70,000	3000	3500	132	Ribbed
518340	929001709413	EvoKit 2x4 A 30L 22W 840 2 SWZDT 7 G4	22	120-277	70,000	3000	4000	136	Ribbed
518373	929001709713	EvoKit 2x4 A 42L 32W 835 2 SWZDT 7 G4	32	120-277	70,000	4200	3500	132	Ribbed
518365	929001709613	EvoKit 2x4 A 42L 31W 840 2 SWZDT 7 G4	31	120-277	70.000	4200	4000	135	Ribbed
518399	929001709913	EvoKit 2x4 A 47L 36W 835 2 SWZDT 7 G4	36	120-277	70,000	4700	3500	131	Ribbed
518381	929001709813	EvoKit 2x4 A 47L 35W 840 2 SWZDT 7 G4	35	120-277	70,000	4700	4000	134	Ribbec

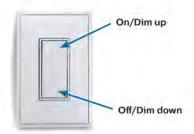
See footnotes on page 9. Please refer to www.usa.lighting.philips.com/systems/lighting-systems/spacewise for more detailed specification sheets as well as a full list of compatible wireless dimming switches.

Features

- Occupancy sensing, daylight harvesting and task tuning in one device
- Granular dimming (occupancy sharing)
- · Dwell time
- Scene setting
- Configuration of sensor parameters if desired – using NFC or IR via intuitive Android-based Philips field apps
- Quick task tuning in the field to optimize light and power levels
- Enables auto-off/manual-on and auto-off/ partial-on application
- DLC qualified: Listed on the QPL for Networked Lighting Controls

Benefits

- Installation savings integral wireless controls factory installed. No need to order separate components.
- Minimal startup and configuration expertise savings on labor time & effort
- Deep energy savings & code compliance strategies
- Faster ROI with attractive payback periods (varies depending on luminiare choices)


Applications

Conference rooms, individual offices, open offices, classrooms, storage and break areas, restrooms, lobbies

SpaceWise wireless switch

To complete the SpaceWise System a wireless switch may be added.

Ordering code: UID8451/10

New configuration tool

An Android phone is needed for commissioning the system. Please refer to www.usa.lighting.philips.com/systems/lighting-systems/spacewise for full list of compatible phones.

Refer to the website for registration details:

www.usa.lighting.philips.com/support/ support/tools/

Sensor parameters can be configured via Philips field apps. Two versions are available:

- NFC This app allows configuring sensor parameters only when you can physically access the sensor with a smartphone.
- IR This app allows configuring sensor parameters plus enables grouping to a wireless switch, which can be done with the IR feature of applicable phones from floor layer.

You must first register for the app to receive a username and password, then download Philips field apps from the Google Play Store.

EvoKit LED retrofit kit gen 4

Application

- A highly efficient, visually comfortable, architecturally styled LED retrofit kit designed to replace recessed linear fluorescent troffers.
- Unique modular design offers refreshing new look in the ceiling when compared to traditional fluorescent luminaires.
- Single light bar combined with slanted troffer helps reflect light to reduce glare and provide uniform light distribution making it ideal for applications such as offices, schools, healthcare and retail.
- · Excellent color rendering with a CRI above 80.
- Extremely high efficacies up to 138 lumens per watt.
- LEDs are an excellent source for use with controls since dimming or frequent switching does not degrade the performance or life of the source.
- Designed for use with standard grid (NEMA "G") or Narrow Grid (NEMA "NFG") ceiling T-Grids.
- High efficiency source and luminaire design help significantly reduce energy consumption and more easily comply with known energy codes.
- Helps meet regulation requirements such as ASHRAE 90.1 and Title 24 when matched with suitable controls.

Construction/Finish

 Simple design allows for quick installation in existing luminaire without the need to break the ceiling plenum.

- Constructed using galvanized steel which helps fight rust and makes for more durable product.
- Integrated securement tabs for securement to existing troffer housing.
- Minimum depth of only 3" necessary to allow proper clearance and installation of the EvoKit.
- Retrofit kit is powder coated after fabrication with high quality, durable finish to ensure no unfinished edges and avoid future potential of corrosion.
- Components fit together easily without the need for tools during installation.

Electrical

- · Multiple driver options available
- Philips Advance Xitanium SR driver allows flexibility to integrate a range of control options.
- 0-10V dimming satisfies universal voltage requirements
- 5-year limited warranty includes all components of the retrofit kit, including driver. LED board and nonelectrical components."
- Listed with UL and Design Lights Consortium to ensure quality performance and safety standards are met.
- High efficiency LEDs have a minimum 70,000 hour rated life (L_{70}).

Enclosure

 Diffuser requires no frames or fasteners and can be easily removed from below without tools if needed

Accessories

- Suitable for use with Philips 503441 emergency backup.
- Suitable for use with a wide range of control systems.
- Earthquake cables available for additional securement to the existing troffer for areas where required.

Prod. No.	Description				
502435	Earthquake cable 317mm				
517987	EvoKit 2x4 replacement lens ribbed				
517748	EvoKit 2x4 replacement lens smooth				
517979	EvoKit 2x2 replacement lens ribbed				
517755	EvoKit 2x2 replacement lens smooth				
503441	EvoKit field installed emergency battery backup (requires the use of bracket)				
517730	EvoKit emergency battery backup bracket (brackets come in packs of 4). Two emergency brackets needed per battery pack.				

EvoKit with new SimpleSet technology for wireless lumen level programming

EvoKit with new SimpleSet technology allows the maximum lumen level to be set prior to installation using a smartphone-based app without requiring power to the luminaire. Available in the 0-10V and SR versions only. The app can be downloaded at Google Play. Please contact your Philips representative for the current list of approved Android smartphones. Distributors can set lumen levels prior to shipping, and contractors can set lumen levels prior to installation. Lumen level is quickly and easily set in two steps:

Step 1: Place the smartphone next to the NFC antenna on the driver.

Step 2: Follow the on-screen instructions.

This is real compatibility

Other lamps claim compatibility, but only InstantFit has been proven to work with 50% more ballasts¹ delivering even light output, proven energy savings and a long average lifetime. That's true compatibility.

- InstantFit works with over 200 ballasts more than any other lamp — so you know it's going to perform as expected and keep you from having to redo any jobs
- Proven over 40% energy savings² over fluorescent means a satisfied customer and no time wasted going back to a job
- Lifetime delivered average life rating of 50,000 hours³, with up to 70,000 hours³ in the portfolio, means satisfied customers
- Improved profit and more time growing business instead of doing rework
- Light quality and performance predictability consistent light output and no flicker means satisfied happy customers and no wasted time redoing a job
- Proven product history and a company with a long history of innovation and reliability in the lighting industry

QUICKTRONIC® T8 Instant Start

Universal Voltage Systems High Efficiency Series

Lamp Striation Control Low Ballast Factor

Lamp / Ballast Guide

32W T8 - OCTRON® lamps

- 1-lamp QHE1x32T8/UNV ISL-SC
- 2-lamp QHE2x32T8/UNV ISL-SC
- 3-lamp QHE3x32T8/UNV ISL-SC
- 4-lamp QHE4x32T8/UNV ISL-SC

Also operates:

FB032, FB031, F025, FB024, F017, FB016, F030/SS (30W), FB030/SS (30W), FB029/SS (29W), F028/SS (28W) & F025/SS (25W)

FO40T8 operation:

1 lamp on 2L ballast; 2 lamps on 3L ballast; 3 lamps on 4L ballast

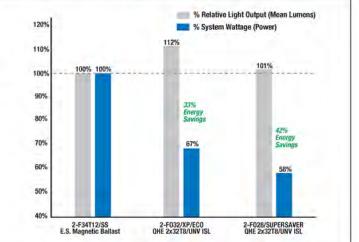
Key System Features

- High Efficiency Systems over 90% efficient
- Lamp Striation Control (LSC)
- Over 100 LPW (lumens/watt) with OCTRON SUPERSAVER® lamps
- · Lowest power T8 I.S. Systems
- Universal voltage (120-277)
- Small Can enclosure size
- 30-50% Energy savings
- Min. Starting Temp:
 - -20°F (-29°C) for T8 lamps
 - 60°F (16°C) for Energy Saving T8 lamps
 - 0°F (-18°C) for FO40T8 lamps
- <10% THD
- Virtually eliminates lamp flicker
- · RoHS compliant
- Lead-free solder and manufacturing process

OSRAM QUICKTRONIC High Efficiency, (QHE) energy-saving electronic T8 ballasts offer several advantages:

- 1. Same Light, Less Power!
- Up to 6% in energy savings compared to standard T8 low power electronic ballasts without compromising light output
- Maximum energy savings when compared to F40T12 magnetically ballasted systems
- Parallel Circuitry: keeps remaining lamps lit if one or more go out.
- 3. Lamp Striation Control (LSC): T8 energy saving lamps should be operated above 60°F, but under certain conditions the lamps may striate. LSC circuitry may minimize or eliminate this condition; however there are limited applications where LSC circuitry may not entirely mitigate lamp striations

These ballasts are also RoHS compliant and feature lead-free solder and manufacturing process.


QUICKTRONIC High Efficiency (QHE) systems are covered by the QUICK 60+* warranty, the first and most comprehensive lamp & ballast system warranty in the industry.

System Information

QUICKTRONIC High Efficiency (QHE) System advantages:

- . Operate from 120V through 277V
 - · Eliminates "wrong voltage" errors
 - · Reduces inventory by 50%
- . Utilizes Instant Start operation for
 - Highest System Efficacy
 - Low temperature starting capability
- Very low harmonic distortion (<10%)THD
- Operate at >42 kHz to reduce potential interference with infrared control systems

System Type (2-lamp)	Input Power (W)	Initial System Lumens	System Efficacy LPW	Mean System Lumens	Relative Mean Light Output	Energy Savings
F34T12 - E.S. Magnetic Ballast	.72	4660	65	3960	Baseline	Baseline
F032/XP® - QHE2x32T8/UNV ISL-SC F028/SS - QHE2x32T8/UNV ISL-SC	48 42	4680 4250	98 101	4440 3995	112% 101%	33% 42%

Application Information

QUICKTRONIC High Efficiency ballasts

are ideally suited for:

- Any applications where the lowest power T8 systems are needed for maximum energy savings
- Energy Retrofits
- · Commercial & Retail
- Hospitality & Institutional
- New Construction

QUICKTRONIC® T8 Instant Start

Universal Voltage Systems High Efficiency Series

Lamp Striation Control Normal Ballast Factor

Lamp / Ballast Guide

32W T8 - OCTRON® lamps 1-lamp QHE1x32T8/UNV ISN-SC 2-lamp QHE2x32T8/UNV ISN-SC 3-lamp QHE3x32T8/UNV ISN-SC 4-lamp QHE4x32T8/UNV ISN-SC

Also operates:

FB032, FB031, F025, FB024, F017, FB016, F030/SS (30W), FB030/SS (30W), FB029/SS (29W), F028/SS (28W) & F025/SS (25W)

FO40T8 operation:

1 lamp on 2L ballast; 2 lamps on 3L ballast; 3 lamps on 4L ballast

Key System Features

- High Efficiency Systems over 90% efficient
- Lamp Striation Control (LSC)
- Over 100 LPW (lumens/watt) with OCTRON SUPERSAVER® lamps
- Lowest power T8 I.S. Systems
- Universal voltage (120-277V)
- Small Can enclosure size
- 30-50% Energy savings
- Min. Starting Temp:
- · -20°F(-29°C) for T8 lamps
- . 60°F (16°C) for Energy Saving T8
- . 0°F (-18°C) for FO40T8 lamps
- <10% THD
- Virtually eliminates lamp flicker
- RoHS compliant
- Lead-free solder and manufacturing

process

Application Information

SYLVANIA QUICKTRONIC High Efficiency ballasts

are ideally suited for:

- · Any applications where the lowest power T8 systems are needed for maximum energy savings
- Energy Retrofits
- · Commercial & Retail
- · Hospitality & Institutional
- New Construction

Lamp Striation Control (LSC)

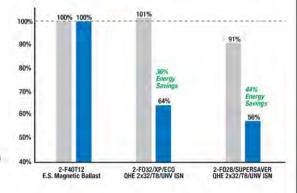
· General lighting applications where energy saving T8 lamps may striate, particularly for the F25 energy saving T8 lamps.

QUICKTRONIC High Efficiency, (QHE) energy-saving electronic T8 ballasts offer several advantages:

- 1. Same Light, Less Power!
- . Up to 6% in energy savings compared to standard T8 low power electronic ballasts without compro-mising light
- · Maximum energy savings when compared to F40T12 magnetically ballasted systems
- 2. Parallel Circuitry: keeps remaining lamps lit if one or more go out.
- 3. Lamp Striation Control (LSC): T8 energy saving lamps should be operated above 60°F, but under certain conditions the lamps may striate. LSC circuitry may minimize or eliminate this condition; however there are limited applications where LSC circuitry may not entirely mitigate lamp striations
- 4. New Banded Packaging
 - · Distributor-friendly for easy stocking and individual ballast sales
 - Reduced waste
 - · Easy removable bands
 - · No tangled wires

These ballasts are also RoHS compliant and feature lead-free solder and manufacturing process.

QUICKTRONIC High Efficiency (QHE) systems are also covered by the QUICK 60 + " warranty, the first and most comprehensive lamp & ballast system


warranty in the industry.

System Information

SYLVANIA QUICKTRONIC High Efficiency (QHE) System advantages:

- . Operate from 120V through 277V
 - · Eliminates "wrong voltage" errors
 - · Reduces inventory by 50%
- · Utilizes Instant Start operation for
 - · Highest System Efficacy
 - Low temperature starting capability
- Very low harmonic distortion (<10%)THD
- . Operate at >42 kHz to reduce potential interference with infrared control systems

System Type (2-lamp)	Input Power (W)	Initial System Lumens	System Efficacy LPW	Mean System Lumens	Relative Mean Light Output	Energy Savings
F40T12 - E.S. Magnetic Ballast	86	5795	67	4930	Baseline	Baseline
F34T12 - E.S. Magnetic Ballast	72	4660	65	3960	80%	16%
F032/XP® – QHE2x32T8/UNV ISN-SC F028/SS – QHE2x32T8/UNV ISN-SC	55 48	5280 4800	96 100	4965 4510	101% 91%	36% 44%

% Relative Light Output (Mean Lumens) % System Wattage (Power)

QUICKTRONIC® T8 Instant Start

Universal Voltage Systems High Efficiency Series

Lamp Striation Control High Ballast Factor

Lamp / Ballast Guide

32W T8 - OCTRON® lamps 3-lamp QHE3x32T8/UNV ISH-SC 4-lamp QHE4x32T8/UNV ISH

Also operates:

FB032, FB031, F030/SS (30W), FB030/ SS (30W), FB029/SS (29W), F028/SS (28W) & F025/SS (25W)

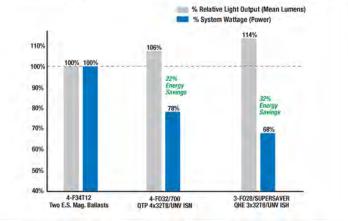
Key System Features

- High Efficiency Systems over 90% efficient
- Lamp Striation Control (LSC)
- Over 100 LPW (lumens/watt) with OCTRON SUPERSAVER® lamps
- · Lowest power T8 PLUS Systems
- Universal voltage (120-277V)
- 1.15-1.18 ballast factor
- 30-50% Energy savings
- · Min. Starting Temp:
- -20°F (-29°C) for T8 lamps
- 60°F (16°C) for Energy Saving T8 lamps
- <10% THD
- Virtually eliminates lamp flicker
- · RoHS compliant
- Lead-free solder and manufacturing process

QUICKTRONIC High Efficiency (QHE) energy-saving electronic T8 ISH (PLUS) ballasts offer several advantages:

- 1. Same Light, Less Power
- Up to 6% in energy savings compared to standard T8 low power electronic ballasts without compromising light output
- Maximum energy savings when compared to F40T12 magnetically ballasted systems
- 2. High Light Output:
 - · Higher lumens per fixture
- Fewer fixtures required for same light output
- Parallel Circuitry: keeps remaining lamps lit if one or more go out.
- 4. Lamp Striation Control (LSC): T8 energy saving lamps should be operated above 60°F, but under certain conditions the lamps may striate. LSC circuitry may minimize or eliminate this condition; however there are limited applications where LSC circuitry may not entirely mitigate lamp striations.

QUICKTRONIC High Efficiency (QHE) systems are covered by the QUICK 60 +* warranty, the first and most comprehensive lamp & ballast system warranty in the industry.


These ballasts are also RoHS compliant and feature lead-free solder and manufacturing process.

System Information

QUICKTRONIC High Efficiency (QHE) System advantages:

- . Operate from 120V through 277V
 - Eliminates "wrong voltage" errors
 - Reduces inventory by 50%
- · Utilizes Instant Start operation for
 - Highest System Efficacy
 - · Low temperature starting capability
- Very low harmonic distortion (<10%) THD
- Operate at >42 kHz to reduce potential interference with infrared control systems

System Type	Input Power (W)	Initial System Lumens	System Efficacy LPW	Mean System Lumens	Relative Mean Light Output	Energy Savings
4:F34T12 - Two E.S. Magnetic Ballasts	144	9330	65	7930	Baseline	Baseline
4:F032T8/700 - QTP4x32T8/UNV-ISN-SC	112	9150	82	8415	106%	22%
3:F032/XP® - QHE3x32T8/UNV-ISH-SC	111/109	10620	96/97	9985	126%	23%
3:F028/SS - QHE3x32T8/UNV-ISH-SC	98/96	9650	98/101	9070	114%	32%

Application Information

QUICKTRONIC High Efficiency ballasts

are ideally suited for:

- Any applications where the highest light output for the lowest amount of power T8 systems are needed for maximum energy savings
- · Energy Retrofits
- Commercial
- Retail
- Hospitality
- Institutional
- New Construction

This is real compatibility

Philips InstantFit LED 4-pin lamps make the transition to LED from CFL 4-pin lamps as simple as replacing a lamp. With both vertical and horizontal options and a wide array of color temperatures, the InstantFit LED lamps can quickly and effectively replace compact fluorescent lamps. The horizontal version includes a rotatable end cap to ensure the light is correctly aimed.

Benefits

- Proven over 40% energy savings² over fluorescent means a satisfed customer and no time wasted going back to a job
- Lifetime delivered average life rating of 50,000 hours³ means satisfied customers
- Easy replacement Replace conventional 32W and 26W 4-pin (PL-C & PL-T) lamps

Features

- Rotatable end cap ensures proper lamp alignment inside the fixture (Horizontal SKUs only)
- Long life 50,000 hour life³ means less maintenance than fluorescent
- Proven product history and a company with a long history of innovation and reliability in the lighting industry

Omni-directional 3-way and dimmable A shape bulbs,

an energy saving alternative to popular incandescents

Philips LED A-shape dimmable and 3-way lamps are a great alternative to standard incandescent lamps. The unique lamp design provides omni-directional light with excellent dimming performance.

These lamps are ideal for decorative and ambient lighting in retail outlets, hotels, restaurants, government buildings, and multi-unit residences.

A classic design for a familiar look

Philips LED glass PAR Lamps with single optic technology provide the familiar look and feel traditional halogen PARs while using a fraction of the energy.

Benefits

- Saves 85% energy When comparing a 13.5W PAR38 LED lamp to a 90W halogen PAR38 lamp[†]
- Long life lowers maintenance costs by reducing re-lamp frequency
- · Will not fade colors, avoids inventory spoilage
- · Contains no mercury
- · Suitable for use in enclosed fixtures

Features

- 25,000-hour claimed lifetime for Energy Star®Qualified lamps*
- 50,000-hour LED lifetime**
- Glass finish for a look and feel replicating traditional halogen PARs
- 3-year limited warranty depending upon operating hours[‡]

Candle/Decorative LED

2.7B12/LED/827-22/E12/DIM 120V

Philips Candle Dimmable LED Lamps offer decorative energy saving ambience with the elegant effect of incandescent candles. Available in bent, blunt and flame tip candles, their unique design provides light in all directions, giving lighting designers a long life alternative to standard incandescent sources.

Product data

General Information	
Cap-Base	E12 [Candelabra Screw]
Nominal Lifetime (Nom)	25000 h
Switching Cycle	50000X
Technical Type	2.7-25W
Light Technical	
Color Code	822-827 [tunable warm white
Initial lumen (Nom)	180 lm
Luminous Flux (Rated) (Nom)	180 lm
Color Designation	Warm Glow(WG)
Correlated Color Temperature (Nom)	2200-2700 K
Luminous Efficacy (rated) (Nom)	66.67 lm/W
Color Consistency	<6
Color Rendering Index (Nom)	80
LLMF At End Of Nominal Lifetime (Nom)	70 %
Operating and Electrical	
Input Frequency	60 Hz
Power (Rated) (Nom)	27 W

Lamp Current (Nom)	35 mA
Wattage Equivalent	25 W
Starting Time (Nom)	0.5 s
Warm Up Time to 60% Light (Nom)	0.5 s
Power Factor (Nom)	0.7
Voltage (Nom)	120 V
Temperature	
T-Case Maximum (Nom)	90 ℃
Controls and Dimming	
Dímmable	Yes
Mechanical and Housing	
Bulb Finish	Clear (CL)
Approval and Application	
Energy Efficiency Label (EEL)	Not applicable
Suitable For Accent Lighting	No

Datasheet, 2019, April 2 data subject to change

HID REPLACEMENT LED LAMPS

A smaller, more versatile design to fit more fixtures

The G2 DirectDrive HID LED lamps are shorter and narrower, allowing them to fit into more fixtures than ever before.

Highest efficacy in the industry: Up to 150 lm/W

By separating the driver from directly connecting to the heat sink, we've maximized efficiency and protected the LED from overheating. This allows the G2 DirectDrive HID replacement LED lamps to have the highest lumens per watt in the industry.

Catalog Number	Rated Lamp Wattage	Lumens	Metal Halide Equivalent Wattage	Input Voltage	Base Type	CRI	IP Rating	Efficacy
NEW G2								
KT-LED12HID-E26-8xx-D*	12W	1,740	50W	120-277V	Medium E26	>80	IP64	145 lm/W
KT-LED18HID-E26-8xx-D**	18W	2,610	70W	120-277V	Medium E26	>80	IP64	145 lm/W
KT-LED27HID-E26-8xx-D /G2	27W	3,915	100W	120-277V	Medium E26	>80	1P64	145 lm/W
KT-LED27HID-EX39-8xx-D /G2	27W	3,915	100W	120-277V	Mogul EX39	>80	IP64	145 lm/W
KT-LED36HID-E26-8xx-D /G2	36W	5,400	150W	120-277V	Medium E26	>80	IP64	150 lm/W
KT-LED36HID-EX39-8xx-D /G2	36W	5,400	150W	120-277V	Mogul EX39	>80	IP64	150 lm/W
KT-LED45HID-E26-8xx-D /G2	45W	6,750	175W	120-277V	Medium E26	>80	IP64	150 lm/W
KT-LED45HID-EX39-8xx-D /G2	45W	6,750	175W	120-277V	Mogul EX39	>80	IP64	150 lm/W
KT-LED54HID-EX39-8xx-D /G2	54W	8,100	250W	120-277V	Mogul EX39	>80	IP64	150 lm/W
NEW! KT-LED63HID-EX39-8xx-D	63W	9,450	250W/320W	120-277V	Mogul EX39	>80	IP64	150 lm/W
G1								
KT-LED80HID-EX39-8xx-D	80W	11,300	320W	120-277V	Mogul EX39	>85	IP64	141 lm/W
KT-LED100HID-EX39-8xx-D	100W	14,100	400W	120-277V	Mogul EX39	>85	IP64	141 lm/W

*8xx denotes several color temperatures available. 80W and 100W lamps are not available in 3000K.

800 Series, 4000K 800 Series, 3000K 850 800 Series, 5000K 830 840

With SmartCool technology, a thermal sensor in the lamp activates during extreme high temperature conditions. Power to the lamp is reduced by up to 20% to cool the lamp and maintain lamp life. Once the sensor reaches an acceptable temperature, the lamp gradually returns to full light output. Included in 54W, 63W, 80W, and 100W DirectDrive HID LED lamps.

ULTRA LED™ RT5/6 HO

Recessed Downlight Kit

SYLVANIA ULTRA RT5/6 HO is a universal input voltage 5" and 6" compatible LED recessed downlight kit that creates high performing white light and is optimized for new construction and retrofit applications utilizing pin based compact fluorescent lamps. Installation is done quickly and easily in most standard six-inch frames.

The RT5/6 HO downlight is offered in 650 lumen, 700 lumen, 900 lumen and 1500 lumen options and achieves up to 88 lumens per watt.

The RT5/6 HO is designed to deliver light output comparable to traditional 1x13W, 1x18W, 1x26W and 2x26W pin based compact fluorescent luminaires.

Application Information

Application Notes

- 1. Operating temperature range between -4°F and +104°F (-20°C and +40°C).
- 2. Suitable for dry, damp or wet indoor or outdoor locations.
- 3. Compatible with Philips Bodine ELI-S-20 Emergency Lighting Micro Inverter.
- Designed to install in standard 6" CFL mounting frame. For a list of compatible housings, please refer to www.sylvania.com/RT6.
- 5. For detailed warranty information, please see www.sylvania.com/RT6.
- The RT5/6HO 650 and 700 lumen is compatible with 120V Phase cut dimmers and 277V Leviton Dimmer model IPX06-70Z.
- The RT5/6 HO 900 and 1500 lumen are compatible with Leviton 0-10V dimmer model IP710-DL.
- For installation in non-insulated ceilings: If insulation is present, it may be placed around the retrofit kit as long as a three-inch space is maintained around the kit.
- Installation performed as a stand-alone kit (without frame) is recommended for hard ceiling. Installation of a recessed incandescent frame is recommended for tiled ceiling application for proper support of the retrofit kit.

Key Features & Benefits

- Three input voltages:
 - -120V
 - 120-277V Universal
 - -347V
- Lumen package:
 - 650 lumens @ 8 watts
 (line voltage dimmable)
 - 700 lumens @ 8 watts
 (line voltage dimmable)
 - 900 lumens @ 13 watts (0-10V Dimmable)
 - 1500 lumens @ 17 watts
 (0-10V Dimmable)
- Replacement for 13W, 18W, 26W and 32W CFL pin based lamps
- Fits in standard 5" and 6" CFL mounting frame
- CCT: 2700K, 3000K, 3500K
 & 4000K
- CRI of >80 and >90

- 35,000 and 50,000 hour life (L70)
- Suitable for dry, damp and wet indoor or outdoor locations (650lm Indoor only)
- UL1598 Listed and Classified for stand-alone and retrofit applications
- Reduces energy consumption up to 34%
- Lasts up to 4 times longer than compact fluorescent lamps
- No warm-up time, instant-on with full light output and stable lamp to lamp color
- Integrated white trim and metal conduit adaptor (included) for direct replacement
- Suitable for use in 8" applications using optional trim extender accessory

Product Offering

Ordering Abbreviation	Wattage	CCT
LED/RT5/6/HO/650	8	3000K, 4000K
LED/RT5/6/HO/700	8	2700K, 3000K, 3500K, 4000K
LED/RT5/6/HO/900	13	2700K, 3000K, 3500K, 4000K
LED/RT5/6/HO/1500	17	3000K, 3500K, 4000K

Specifications and Certifications

the ultimate LED retrofit kit

RemPhos' LEDBARKIT universal retrofit kit for linear fluorescent luminaires is the perfect retrofit solution. Delivers better long-term reliability, longer life (10yr warranty), controllability (standard 0-10V dimmable driver) and faster paybacks (since Utility incentives are typically higher), when compared to LED tubes. Designed to easily fit into existing T5/T8/T12 linear fluorescent fixtures. Fast, "one-man" installation.

SIMPLE INSTALLATION

Retrofits existing fluorescent fixtures quickly with unique magnetic design and quick connector technology. Designed from an installer's point of view, convert existing fixtures fast with magnets on the back of the light bars that allow hands-free placement (self-tapping screws are provided for for secure install). Electrical quick connects for simple, error-free power connections. For videos showing the simple installation go to www.remphos.com/videos

FITS BETWEEN THE SOCKETS

No need to remove existing T5/T8/T12 sockets. The LEDBAR is sized to fit in between the existing sockets, further reducing install time.

PERFORMANCE-OPTIMIZED TECHNOLOGY

Provides high-efficacy light up to 130 lumens per watt along with a remarkable 10-year system warranty.

MAXIMUM VERSATILITY

Offered in 2ft, 3ft and 4ft lengths along with multiple lamp/driver combinations (1L,2L,3L,4L) providing a fit for any application.

MANY LIGHT OUTPUT CHOICES

Systems available in 10W (1300LM) all the way to 80W (10,400LM). See ordering guide for available systems.

STANDARD 10V DIMMABLE DRIVER

CODE-COMPLIANT APPLICABILITY

Meets typical foot candle requirements for office and commercial space.

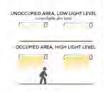
HIGH QUALITY CONSTRUCTION & MATERIALS

Top tier LED diodes. Heatsink made from extruded 6063 T5 aluminum with substantial surface area for maximum cooling.

SUITABLE FOR DRY & DAMP LOCATIONS

UL 1598C CLASSIFIED RETROFIT KIT LISTED & DLC QPL LISTED

10 YEAR WARRANTY, L70 > 100,000HRS (10)


OPTIONAL "BAA" BUY AMERICA ACT

Compliant models available, assembled in our state-of-the-art Middleton, MA assembly center. (BAA SECTION 1605 COMPLIANT)

CUSTOM BRACKET DESIGNS AVAILABLE

Contact our engineering team to help design a low-cost bracket for easy mounting in direct/indirect fixture. Helps to provide up and down light with 1, 2, 3, 4 or more LED bars.

OPTIONAL HIGH/LOW MOTION SENSOR

Contact our engineering team to help choose the best low-cost integrated motion sensor which will easily install into the existing fixture, behind the lens. Our motion sensor technology can read through glass and plastic lenses. Also compatible with ZigBee wireless networks.

Refit™ LED Door Kit

2' x 2' Refit Door Kit 2' x 4' Refit Door Kit

Project name	
Date	
Type	

Product Description:

Ultimate refit solution serves as an upgrade to Linear Fluorescent Fixture that provides high uniformity, excellent efficiency and reduced glare in 2'x2' and 2'x4' applications. The lumen maintenance at L70 of initial lumens at 50,000 hours of operation, allows lower maintenance costs over time. It is suitable for indoor general lighting.

Performance Summary 2' x 2':

Delivered Lumen Output: 2000lm (4000K), 1950lm (3500K)

System Input Power: 21W

Standard Dimming Compatibility: 0-10V Efficacy: 93 LPW (4000K), 91 LPW (3500K)

Input Voltage: 120-277V CCT: 3500K, 4000K Typical CRI: 80+

Color Consistency: 4 Step MacAdam Ellipse Lifetime Rating: 50,000 Hours @ L70 Input Frequency (Hz): 50/60Hz

Power Factor: >0.9

Dimensions: 21.9" (L) x 22.5" (W) x 3.4" (H)

THD: <20%

Mounting: Fits most all 2' x 2' standard fixtures

Maximum Weight: 3 lbs

Limited Warranty: 5 Years Standard Files Available: LM79, LM80, IES

Performance Summary 2' x 4':

Delivered Lumen Output: 4100 lm (4000K), 3900 lm (3500K)

System Input Power: 36W

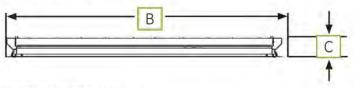
Standard Dimming Compatibility: 0-10V Efficacy: 112 LPW (4000K), 106 LPW (3500K)

Input Voltage: 120-277V CCT: 3500K, 4000K Typical CRI: 80+

Color Consistency: 4 Step MacAdam Ellipse Lifetime Rating: 50,000 Hours @ L70 Input Frequency (Hz): 50/60Hz

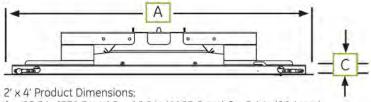
Power Factor: >0.9

Dimensions: 46.6" (L) x 22.5" (W) x 3.4" (H)


THD: <20%

Mounting: Fits most all 2' x 4' standard fixtures

Maximum Weight: 5 lbs


Limited Warranty: 5 Years Standard Files Available: LM79, LM80, IES

Product Dimensions:



2' x 2' Product Dimensions:

A = 22.5 in (571.5 mm) B = 21.9 in (556.3 mm) C = 3.4 in (86.4 mm)

A = 22.5 in (571.5 mm) B = 46.6 in (1183.6 mm) C = 3.4 in (86.4 mm)

Ordering Information:

PRODUCT CODE	DESCRIPTION CODE	DESCRIPTION	MODEL SERIES	CRI	COLOR TEMP (K)	TYPICAL LUMENS	SYSTEM WATTAGE
LED20/DK22/835/10/SO	208160	2x2 Refit Door Kit 835 0-10V SO	Refit 2x2	83	3500	1950	21W
LED20/DK22/840/10/SO	208161	2x2 Refit Door Kit 840 0-10V SO	Refit 2x2	82	4000	2000	21W
LED35/DK24/835/10/SO	208162	2x4 Refit Door Kit 835 0-10V SO	Refit 2x4	83	3500	3900	36W
LED35/DK24/840/10/SO	208163	2x4 Refit Door Kit 840 0-10V SO	Refit 2x4	82	4000	4100	36W

a product of ecomagination

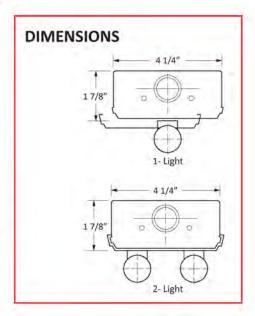
OCF Fluorescent Open Channel Fixture

APPLICATION

This economical strip light is ideal for use in all residential, commercial, and industrial areas where general area lighting is desired.

CONSTRUCTION

This fixture is formed in heavy gauge die formed metal, and is finished in baked white enamel or post powder paint for maximum reflectivity and durability. Socket bar, end plate, and ballast cover snap on for tool free assembly and component access when service is desired. End plate doubles as a joiner/aligner plate when fixtures are hung in continuous runs.

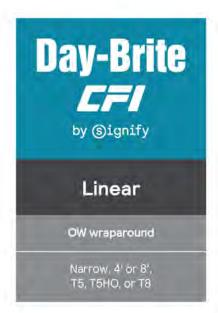

ELECTRICAL

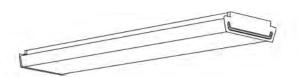
All units are supplied with UL Listed Class "P" thermally protected ballast. OCF fixtures meet or exceed all requirements for UL Luminaire Standard #1598. Additionally, each unit is in compliance with National Energy Standards.

MOUNTING

OCF fixtures are equipped with knockouts and holes for surface, pendant, chain, or cable mounting. This fixture can be mounted individually or in continuous runs. End plates have 7/8" knock-outs for electrical connection from the end if desired.

ORDERING INFORMATION


EXAMPLE: OCF-4-232-EBUNI-NP-EMB


HOUSING	LENGTH	# LAMPS	LAMP TYPE	VOLTAGE	BALLAST	OPTIONS
OCF	2'	1		T8		CO Convenience Outlet
147	3'	2	17 F17 T8	120 120V	NP 0.88 BF	DM Dimming Ballast
	4'	3	25 F25 T8	277 277V	LP 0.77 BF	EMB Emergency Ballast
	6'	4	32 F32 T8	EBUNI Multi Volt	HP 1.18 BF	NY 20 Gauge NYC Housing
	8'	6.	A	T5		PS Pull Chain Switch
			14 F14 5 28 F28 T5	EBUNI Multi Volt	NP 0.90 BF	REF Reflector (86%, 92%, 95%) symmetrical/asymmetrical WG Wire Guard
			1	T5HO		A
			54 F54 T5HO	EBUNI Multi Volt	NP 1.0 BF	
						Consult factory for other options

LED tubes will be installed rather than T8 fluorescent lamps

Monmouth Lighting Corp. | 5-C Marlen Drive, Hamilton, NJ 08691
T: 609-587-7900 | F: 609-613-5586 | www.monmouthlighting.com

Project	
Location:	
Cat No	
Тура	
Lamps:	Dty
Notes	

Example: OWN228-UNV-1/2-EB

The Day-Brite / CFI OW wraparound narrow is a functional and economical lift-and-shift wrap, ideal for surface mount general illumination in light commercial and residential applications.

Ordering guide

Series	Width	No. of Lamps per Cross Section	Lamp Type	Voltage	Options
	N	2	7	-	
OW Wraparound TOW Tandem (8')	N Narrow	(not included) 2	28 28WT5 (46") 32 32WT8 (48") 54HO 7 WT5HO (46")	UNV Universal voltage 120/277V 120 120V 277 277V 347 347V	1/2 One 2-lamp ballast 1/4 One 4-lamp ballast 2/2 Two 2-lamp ballasts 2/2 Two 2-lamp ballasts EB Electronic ballast, <10% THD EB10R T8 electronic ballast, program rapid start, <10% THD EBHE T8 electronic ballast, high efficiency, std. ballast factor EBLHE T8 electronic ballast, high efficiency, low ballast factor EBSD T8 electronic ballast, high efficiency, high ballast factor EBD7 Advance Mark 7 dimming ballast, .88 ballast factor EBD8 Electronic dimming ballast, .0-10V (low voltage) control EBD Electronic dimming ballast, customer specified E1 B100 emerg. ballast, T8, 350-450 lumens, 120/277V E1CAN B100-CAN emerg. ballast, Canada market, 350-450 lumens, 120/347V E7 B60 emerg. ballast, T8, 600-700 lumens, 120/277V E5 B50 emerg. ballast, US or Canada market, T8, 1100-1400 lumens, UNV E5CAN B50 -CAN emerg. ballast, Canada market, T8, 1100-1400 lumens, 120/347V E5ST B50ST emerg. ballast w/self test, T8, 1100-1400 lumens, 120/347V E7LP LP550 emerg. ballast, US or Canada market, T5/T5HO, 750-1325 lumens, 120/277V E6LP LP600 emerg. ballast, US or Canada market, T5/T5HO, 750-1325 lumens, 120/277V E6LR Fusing, fast blow

See Section 1600-OA for Option Information. See Page 950-SS for Mounting Hardware.

Accessories (order separately)

- · CS-400 Rigid Canopy
- · CS-500 42° Top Swivel Canopy
- · CS-12 12" Stem
- CS-18 18" Stem
- CS-24 24" Stem
- CS-30 30" Stem
- CS-48 48" Stem

CS-36 - 36" Stem

LED tubes will be installed rather than T8 fluorescent lamps

www.etiled.us

12" Round Flush Mount

LED

54074143

14 Watt 1000lms Round Flush Mount Specifications

The ETi 14 watt 1000 lumen LED round flush mount fixture offers exceptional performance for precision lighting applications, while reducing energy and maintenance cost when compared with conventional light sources. Lasting over 10 times longer, these flush mount fixtures are high quality replacements for incandescent flush mount fixtures and is available in 4000°K. They are UL listed for use in damp and dry locations. ENERGY STAR rated. Suitable for installations from – 4° F to 95° F.

KEY FEATURES & BENEFITS

- 14 Watts
- Multi-volt 100-277V
- 1000 lumen, 4000K CCT
- Non-dimmable
- UL damp location rated
- No UV, IR or mercury
- Warranty 5 years or 50,000 hours

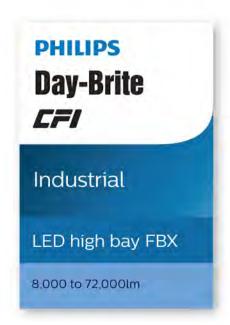
FIXTURE DIMENSIONS

SKU# 54074143

Dimension A = 11.8" Dimension B = 3.7"

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. For FCC Part 15 user information, please see www.etiled.us/fcc15b

APPLICATION INFORMATION


Designed to be used anywhere a standard incandescent fixture is used. Typically used in bedrooms, hallways, kitchens, living rooms and recreational rooms. The LED round flush mount fixture carries a 5 year Warranty.

855-384-7754

www.etiled.us

Project	
Location:	
Cat No.	
Type:	
Lamps:	Qty
Notes:	

The Philips Day-Brite / Philips CFI LED high bay FBX provides versatility in form and function. With a range of lumen packages, optical distributions, and accessories available, this luminaire can be used in many different applications ranging from warehouses to retail outlets. SpaceWise technology is optional for additional energy savings and control.

Ordering guide Example: FBX24LL40-UNV

Family	Lumen Package	Source	Color Temperature	Voltage	Distribution	Options
FBX		L	[\\		-	
FBX	08L 8,000 nominal delivered lumens 12,000 nominal delivered lumens 16,000 nominal delivered lumens 20,000 nominal delivered lumens 24,000 nominal delivered lumens 30,000 nominal delivered lumens 36,000 nominal delivered lumens 37,000 nominal delivered lumens 45,000 nominal delivered lumens 45,000 nominal delivered lumens 72,000 nominal delivered lumens 60,000 nominal delivered lumens 72,000 nominal delivered lumens 72,000 nominal delivered lumens 72,000 nominal delivered lumens	L LED	35 3500K (CRI 80) 40 4000K (CRI 80) 50 5000K (CRI 80)	UNV Universal voltage 120-277V 120 120V 240 240V 240V 277 277V 347 347V 480 480V	Blank General Distribution N Narrow M Medium W Wide A Aisle	WP6 ¹ Wired 6' 16/3 Cord & NEMA Twist lock plug WC6 Wired 6' 16/3 Cord & NEMA Twist lock plug for line voltage and wired 6' purple and gray leads w/disconnect plug for dimming control WC6D Wired 6' 16/3 Cord for line voltage and wired 6' cord for dimming control MD360 ² 360' Motion detector (ON/OFF) MD360D ² 360' Motion detector (ON/OFF) EMLEDC Emergency battery (O'C - 40'C) High ambient (50'C) for SWI, 37,000lm, or 72,000lm High ambient (55'C) LCA Clear acrylic lens LFA Frosted acrylic lens LFR Frosted ribbed lens LCP Clear polycarbonate lens SP1 Optional 10KV surge protector Fusing, fast blow SWI* SpaceWise wireless technology for integrated occupancy (50'C max.): BSL310 Emergency battery (O'C-40'C) 24,000 lumen version maximum

Footnotes

- 1. GLR fusing not available for 347V or 480V
- 2. Not available with SpaceWise (SWI) option
- 3. Must specify line voltage
- 4. Must order SWZ-REMOTE SpaceWise handheld remote with each system order
- 5. Not available in 37,000lm or 72,000lm
- 6. Not available in 30,000lm, 37,000lm, 60,000lm, or 72,000lm

Predicted L70 Lifetime

 40°C Ambient > 100,000 hours (based upon LED manufacturer's supplied LM-80 data and in-situ laboratory testing)

Wiring Notes

· Standard cords have 3 wires. Consult factory for other cord options.

General Notes

- All options factory installed.
- · All accessories are field installed.
- Many luminaire components, such as reflectors, refractors, lenses, sockets, lampholders, and LEDs are made from various types of plastics which can be adversely affected by airborne contaminants. If sulfur based chemicals, petroleum based products, cleaning solutions, or other contaminants are expected in the intended area of use, consult factory for compatibility.
- · EMLED and EMLEDC provide 3500 lumens

Emergensee-

Features

- Compact, low-profile design in neutral finish
- · Energy-efficient LED technology
- EZ snap-out chevron directional indicators
- UL listed for damp locations & meets UL924, NFPA 101 Life Safety Code, NEC, OSHA, Local and State Codes

Electrical

- Dual 120V/277V voltage
- Charge rate/power "ON" LED indicator light and push-to-test switch for mandated code compliance testing
- LVD (low voltage disconnect) prevents battery from deep discharge
- Long-life, maintenance-free, rechargeable NiCd battery (EM model)
- Internal solid-state transfer switch automatically connects the internal battery to LED board for minimum 90-minute emergency illumination
- Fully automatic solid-state, two-rate charger initiates battery charging to recharge a discharged battery in 24 hours.

Mounting

 Universal surface mount, wall or ceiling, with EZ-snap thermoplastic mounting canopy, which snaps into place making installation quick & easy.

Housing

 Injection-molded, engineering-grade, V-0 flame retardant, high-impact, thermoplastic in white or black finish

Options

- SDT: Self-Diagnostic (option SDT) continually diagnoses unit's performance and tests system (auto battery discharge once every 30 days and once every 12 months) to ensure reliable operation and to meet electrical and life safety codes
- DC: Dual Circuit option on the AC-only unit enables it to be connected to two different (primary and secondary, one acting as a back-up for the other) supplies at the same time (contact customer service).

CENTER IN

Illumination

 Ultra-bright, energy efficient, long-life Red or Green LED

SALIDA faceplates also available.

Warranty

Five Year Warranty on all electronics and housing.
 Batteries are pro-rated warranted for 5 years.

Dimensions

Special Wording Sign samples

ORDERING INFORMATION

D-Series Size 2

LED Wall Luminaire

1 lbs

(0.5 kg)

d"series

Specifications

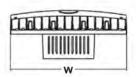
Lui	all	C

Width:

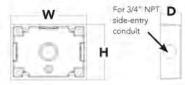
Depth:

18-1/2" 21 lbs Weight: (47.0 cm)

(9.5 kg


10" (25.4 cm)

7-5/8" Height: (19.4 cm) Back Box (BBW) 5-1/2"


Width: Weight: (14.0 cm) 1-1/2"

Depth: (3.8 cm)

4" Height: (10.2 cm)

Catalog

Notes

Туре

+ Capable Luminaire

This item is an A+ capable luminaire, which has been designed and tested to provide consistent color appearance and system-level interoperability.

- All configurations of this luminaire meet the Acuity Brands' specification for chromatic consistency
- This luminaire is A+ Certified when ordered with DTL® controls marked by a shaded background. DTL DLL equipped luminaires meet the A+ specification for luminaire to photocontrol interoperability1
- This luminaire is part of an A+ Certified solution for ROAM® or XPoint™ Wireless control networks, providing out-of-the-box control compatibility with simple commissioning, when ordered with drivers and control options marked by a shaded background¹

To learn more about A+, visit www.acuitybrands.com/aplus.

- 1. See ordering tree for details.
- 2. A+ Certified Solutions for ROAM require the order of one ROAM node per luminaire. Sold Separately: Link to Roam; Link to DTL DLL

Ordering Information

EXAMPLE: DSXW2 LED 30C 700 40K T3M MVOLT DDBTXD

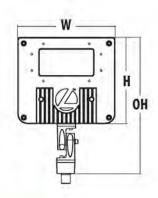
DSXW2 LED

Series	LEDs		Drive C	urrent	Color ten	nperature	Distribu	tion	Voltage	Mounti	ng	Control Opt	ons
DSXW2 LED	30C 30 (t/	LEDs wo ggines) LEDs aree ggines)	350 530 700 1000	350 mÅ 530 mA 700 mA 1000 mA ¹ (1.A)	30K 40K 50K AMBPC	3000 K 4000 K 5000 K Amber phosphor converted ²	T2S T2M T3S T3M T4M TFTM	Type II Short Type II Medium Type III Short Type III Medium Type III Medium Type IV Medium Forward Throw Medium	MVOLT 3 120 4 208 4 240 4 277 4 347 4.5 480 4.5	(blank)	Surface mounting bracket ed separately ⁶ Surface- mounted back box (for conduit entry)	Shipped in PE PER PERS PER7 DMG PIR PIRH PIR1FC3V	Photoelectric cell, button type. NEMA twist-lock receptacle only (control ordered separate). Five-wire receptacle only (control ordered separate). Seven-wire receptacle only (control ordered separate). O-10v dimming wires pulled outside fixture (for use with an external control, ordered separately). 180° motion/ambient light sensor, <15' mtg ht. 180° motion/ambient sensor, 15-30' mounting height, ambient sensor enabled at 1fct. Motion/ambient sensor, 15-30' mounting height, ambient sensor enabled at 1fct. 180° motion ambient sensor, 15-30' mounting height, ambient sensor enabled at 1fct.

Other Options			Finish (requ						
Shipp	ped installed	Shippe	ed separately 11	DDBXD	Dark bronze	DSSXD	Sandstone	DWHGXD	Textured white
SF	Single fuse (120, 277, 347V)	BSW	Bird-deterrent spikes	DBLXD	Black	DDBTXD	Textured dark bronze	DSSTXD	Textured sandstone
DF	Double fuse (208, 240, 480V)	VG	Vandal guard	DNAXD	Natural aluminum	DBLBXD	Textured black		
HS	House-side shield 1			DWHXD	White -	DNATXD	Textured natural aluminum		
SPD	Separate surge protection (100					

D-Series Size 1

LED Flood Luminaire



Catalog Notes Туре

Specifications

0.6 ft2 EPA: (0.05 m!)3-1/8" Depth: (8.0 cm)8-7/8" Width: (22.4 cm) 7-3/4" Height: Overall 12" Height (30.5 cm) 7.2 lbs Weight:

Introduction

D-Series Size 1 Flood features advanced optics and precision illumination in a sleek and compact form that seamlessly blends with the environment. State of the art reflector design with cutting edge chip-on-board LED technology produces excellent uniformity using precision beam patterns. Provides long-life replacement for 70-150W metal halide floodlights offering up to 77% energy savings with expected service life of over 100,000 hours.

Ordering Information

EXAMPLE: DSXF1 LED P1 40K MSP MVOLT THK DDBXD

Series	Performance Package	Color Temperature	Distribution	Voltage	Mounting		Options		Finish trea	uirea)
DSXF1 LED	P1 P2	30K 3000K 40K 4000K 50K 5000K	NSP Marrow spot MSP Medium spot MFL Medium flood FL Flood WFL Wide flood WFR Wide flood, rectangular HMF Horizontal flood	MVOLT 1 120 2 208 2 240 2 277 2 347 2	Shipped in THK IS YKC62 Shipped se DSXF1/2TS FTS.CG6	Knuckle with 1/2"NPS threaded pipe Integral slipfitter (fits 2-3/8"O.D. tenon) Yoke with 16-3 SO cord.	PE PEX SF DF DMG	Photocontrol, button style M Photocontrol external threaded adjustable ³ Single fuse (120, 277, 347V) ² Double fuse (208, 240) ² 0-10V dimming driver (no controls) ed separately ⁸ Upper/bottom visor (universal) Full visor Vandal quard	DDBXD DBLXD DNAXD DWHXD	Dark bronze Black Natural aluminu White

Accessories

Ordered and shipped separately

DSXF1/2TS DDBXD U Slipfitter for 1-1/4"to 2-3/8"OD tenons: mates with 1/2"threaded knockle (specify finish) FRWB DDBXD U Radius wall bracket, 7-3/8° OD tenon (specify FSPB DDBXD U Steel square pole bracket, 7-3/8*00 tenon (specify finish) Lipper/bottom visor accessory (specify finish) DSYFIEV DORYD II Full visix accessory (specify finish) DSXF1VG U Vandal quard accessory

> For more mounting options, visit our Dages

Stock configurations are offered for shorter lead times:

arandara (-arti/Inni)	Stock Part Number	Cl Code
DSXF1 LED P1 40K WFL MVOLTTHK DDBXD	DSXF1 LED P1 40K	*240TJH
DSXFT LED P1 50K WFL MVOLTTHK DDBXD	DSXF1 LED P1 50K	*240TJG
DSXF1 LED P1 40K WFL MVOLT YKC62 DDBXD	DSXF1 LED P1 40K YK	*263KL9
DSXF1 LED P1 50K WFL MVOLT YKC62 DDBXD	DSXF1 LED P1 50K YK	*263UJE
DSXF1 LED P2 40K WFL MVOLTTHK DDBXD	DSXF1 LED P2 40K	*240TJL
DSXF1 LED P2 50K WFL MVOLT THK DDBXD	DSXF1 LED P2 50K	*240TJJ
DSXF1 LED PZ 40K WFL MVOLT YKC62 DDBXD	DSXF1 LED P2 40K YK	*263KLA
DSXF1 LED P2 50K WFL MVOLTYKC62 DDBXD	DSXF1 LED P2 50K YK	*263UJG
DSXF1/2 Slip-fitter Tenon Accessory DDBXD	DSXF1/2TS DDBXD U	*216G5K

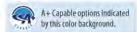
- MVOLT driver operates on line voltage from 120-277V
- Single fuse (SF) requires 120V, 277V or 347V. Double fuse (DF) requires 208V, 240V or 480V.
- Also available as accessories; see Accessories information at left.
- Rated 25C maximum ambient for performance package P2. Specify PEX for higher ambient temperatures.
- Photocontrol (PE, PEX) requires 120, 208, 240, 277 or 347 voltage option
- 6. Must specify 120, 277 or 347 voltage option.

Manufacturer Specification Sheets

ECM 2: Lighting System Improvements
Exterior

Investment Grade Audit

This page is intentionally left blank.


Catalog Number

Notes

Type

Introduction

The modern styling of the D-Series is striking yet unobtrusive - making a bold, progressive statement even as it blends seamlessly with its environment. The D-Series distills the benefits of the latest in LED technology into a high performance, high efficacy, long-life luminaire. The outstanding photometric performance results in sites with excellent uniformity, greater pole spacing and lower power density. It is ideal for replacing up to 400W metal halide with typical energy savings of 70% and expected service life of over 100,000 hours.

Ordering Information

EXAMPLE: DSX0 LED P6 40K T3M MVOLT SPA NLTAIR2 PIRHN DDBXD

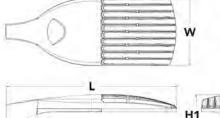
)	S	X	0	L	E	D	

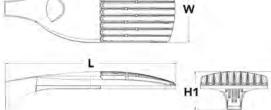
Séries	LHOV	Color temperature	Distribution	Voltage Mounting
DSX0 LED	Forward optics P1 P4 P7 P2 P5 P3 P6 Rotated optics P101 P121 P111 P131	30K 3000 K 40K 4000 K 50K 5000 K	T1S Type I short T5S Type V short T2S Type II short T5M Type V medium T2M Type II medium T5W Type V wide T3S Type III short BLC Backlight control ² T3M Type III medium LCCO Left corner cutoff' T4M Type IV medium RCCO Right corner cutoff' TFTM Forward throw medium T5VS Type V very short	MVOLT 34 120 4 SPA Square pole mounting RPA Round pole mounting WBA Wall bracket SPUMBA Square pole universal mounting adaptor 6 RPUMBA Round pole universal mounting adaptor 6 Shipped separately KMA8 DDBXD U Mast arm mounting bracket adaptor (specify finish)?

Control o	Mons			Other	options:	Finish	
Shipped NLTAIR2 PIRHN PER PER5 PER7 DMG	installed nLight AIR generation 2 enabled ^{6,9} Network, high/low motion/ambient sensor ⁴⁰ NEMA twist-lock receptacle only (control ordered separate) ^{11,17} Five-pin receptacle only (control ordered separate) ^{11,17} Seven-pin receptacle only (leads exit fixture) (control ordered separate) ^{11,17} O-10V dimming extend out back of housing for external control (control ordered separate)	PIR PIRH PIR1FC3V PIRH1FC3V FAO	High/low, motion/ambient sensor, 8-15' mounting height, ambient sensor enabled at 5fc** ¹¹⁸ High/low, motion/ambient sensor, 15-30' mounting height, ambient sensor enabled at 5fc** ¹³⁸ High/low, motion/ambient sensor, 8-15' mounting height, ambient sensor enabled at 1fc** ¹³⁸ High/low, motion/ambient sensor, 15-30' mounting height, ambient sensor enabled at 1fc** ¹³⁸ Field adjustable output**	HS SF DF L90 R90 DDL	House-side shield ¹⁶ Single fuse (120, 277, 347V) ¹ Double fuse (208, 240, 480V) ¹ Left rotated optics ¹ Right rotated optics ¹ Diffused drop lens ¹⁰ ped separately Bird spikes ¹⁷ External glare shield ¹⁷	DDBXD DBLXD DNAXD DWHXD DDBTXD DBLBXD DNATXD DWHGXD	Dark bronze Black Natural aluminum White lextured dark bronze fextured black fextured natural aluminum Textured white

D-Series Size 1

LED Area Luminaire

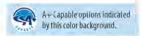




Specifications

EPA:	1.01 ft ² (0.09 m ²)
Length:	33" (83.8 mi)
Width:	13" (33.0 mi)
Height H1:	7-1/2" (19.0 cm)
Height H2:	3-1/2"

Weight 27 lbs (max):



Introduction

The modern styling of the D-Series is striking yet unobtrusive - making a bold, progressive statement even as it blends seamlessly with its environment. The D-Series distills the benefits of the latest in LED technology into a high performance, high efficacy, long-life luminaire.

The outstanding photometric performance results in sites with excellent uniformity, greater pole spacing and lower power density. It is ideal for replacing up to 750W metal halide in pedestrian and area lighting applications with typical energy savings of 65% and expected service life of over 100,000 hours.

Ordering Information

EXAMPLE: DSX1 LED P7 40K T3M MVOLT SPA NLTAIR2 PIRHN DDBXD

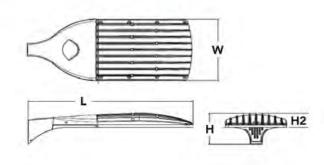
DSX1 LED

Series	LEDS	Color temperature	Distribution	Voltage	Mounting
DSX1 LED	Forward optics	30K 3000 K	T1S Type I short T5VS Type V very short	WAOFL 2	Shipped included
	P1 P4 P7	40K 4000 K	T2S Type II short T5S Type V short	120 4	SPA Square pole mounting
	P2 P5 P8	50K 5000 K	T2M Type II medium T5M Type V medium	2084	RPA Round pole mounting
	P3 P6 P9		T3S Type III short T5W Type V wide	240 4	WBA Wall bracket
	Rotated optics		T3M Type III medium BLC Backlight control ²	2774	SPUMBA Square pole universal mounting adaptor 9
	P101 P121		T4M Type IV medium LCCO Left corner cutoff ²	347 4.5.	RPUMBA Round pole universal mounting adaptor 6
	P11 ¹ P13 ¹		TFTM Forward throw RCCO Right corner cutoff?	480 44	Shipped separately
			medium		KMA8 DDBXD U Mast arm mounting bracket adaptor (specify finish) (

Control op	itions	Other options	Finish			
Shipped i NLTAIR2 PIRHN PER PER5 PER7	Installed In Light AIR generation 2 enabled * Network, high/low motion/ambient sensor? NEMA twist-lock receptacle only (controls ordered separate) ** Five-pin receptacle only (controls ordered separate) ** Seven-pin receptacle only (controls ordered separate) ** ** Seven-pin receptacle only (controls ordered separate) ** ** ** ** ** ** ** ** ** **	PIR PIRH PIR1FC3V		Shipped installed HS House-side shield ¹⁷ SF Single fuse (120, 277, 347V) ⁴ DF Double fuse (208, 240, 480V) ⁸ L90 Left rotated optics ¹ R90 Right rotated optics ¹	DDBXD DBLXD DNAXD DWHXD DDBTXD DBLBXD	Dark bronze Black Natural aluminum White Textured dark bronz Textured black
DMG DS	0–10v dimming wires pulled outside fixture (for use with an external control, ordered separately) 12 Dual switching $^{12,\rm TM4}$	FAO	ambient sensor enabled at 1fc ^{15,16} Field adjustable output ¹⁸	Shipped separately BS Bird spikes ¹⁸ EGS External glare shield ¹⁰	DNATXD	Textured natural aluminum Textured white

D-Series Size 2

LED Area Luminaire



Specifications

1.1 ft¹ (0.10 m²) EPA: 40" Length: (101.6 cm) 15" Width: (38.1 cm) 7-1/4" Height 1: Height 2: 3.5" (max):

Weight:

Introduction

The modern styling of the D-Series is striking yet unobtrusive - making a bold, progressive statement even as it blends seamlessly with its environment.

The D-Series distills the benefits of the latest in LED technology into a high performance, high efficacy, long-life luminaire. The outstanding photometric performance results in sites with excellent uniformity, greater pole spacing and lower power density. The Size 2 is ideal for replacing 400-1000W metal halide in area lighting applications with energy savings of up to 80% and expected service life of over 100,000

Ordering Information

36lbs

EXAMPLE: DSX2 LED P7 40K T3M MVOLT SPA NLTAIR2 PIRHN DDBXD

DSX2 LED

Series	LEDs	Color temperature	Distribution	Voltage	Mounting		
DSX2 LED	Forward optics P1 P5 P2 P6 P3 P7 P4 P8 Rotated optics¹ P10 P13 P11 P14 P12	30K 3000 K 40K 4000 K 50K 5000 K	T1S Type I Short T5VS Type V Very Short T2S Type II Short T5S Type V Short T2M Type II Medium T5M Type V Medium T3S Type III Short T5W Type V Wide T3M Type III Medium BLC Backlight control T4M Type IV Medium LCCO Left corner cutoff TFTM Forward Throw RCCO Right corner cutoff Medium	MVOLT ³ 120 ⁴ 208 ⁴ 240 ⁴ 277 ⁴ 347 ⁴ 480 ⁴	Shipped included SPA Square pole mounting RPA Round pole mounting WBA Wall bracket SPUMBA Square pole universal mounting adaptor * RPUMBA Round pole universal mounting adaptor * Shipped separately KMA8 DDBXD U Mast arm mounting bracket adaptor (specify finish) *		

ontrol op	tions		Other	roptions	Finish terms as		
Marine Control Control	installed	PIRH	Pilland anation for birth carries NE 201-constitution	100000	ped installed	DDBXD	Dark bronze
PIRHN PER PER5 PER7	nLight AIR generation 2 enabled / Network, Bi-Level motion/ambient sensor * NEMA twist-lock receptacle only (no controls) * Eve-wire receptacle only (no controls) * Seven-wire receptacle only (no controls) *	FAO	Bi-level, motion/ambient sensor, 15-30' mounting height, ambient sensor enable at 5fc ¹¹ Field Adjustable Output ¹⁷	HS House-side shield ** SF Single fuse (120, 277, 347V) * DF Double fuse (208, 240, 480V) * L90 Left rotated optics * R90 Right rotated optics *		DBLXD DNAXD DWHXD DDBTXD DBLBXD	Black Natural aluminum White Textured dark bronze Textured black
DMG DS	0-10V dimming extend out back of housing for external control (no controls) Dual switching N.TZ			Ship BS EGS	ped separately Bird spikes ^{1/s} External glare shield ^{1/s}	DNATXD DWHGXD	Textured natural aluminum Textured white

D-Series Size 1 LED Wall Luminaire

d"series

Specifications

Luminaire

Width:	13-3/4" (34.9 cm)	Weight:	12 lbs (5.4 kg)
Depth:	10" (25.4 cm)		

Height: 6-3/8"

Back Box (BBW, ELCW)

Width:	13-3/4"	BBW	5 lbs
	(34.9 cm)	Weight:	(2.3 kg)
Depth:	4"	ELCW	10 lbs
	(10.2 cm)	Weight:	(4.5 kg)
Height:	6-3/8" (16.2 cm)		

Catalog Number Notes

Introduction

The D-Series Wall luminaire is a stylish, fully integrated LED solution for building-mount applications. It features a sleek, modern design and is carefully engineered to provide long-lasting, energy-efficient lighting with a variety of optical and control options for customized performance.

With an expected service life of over 20 years of nighttime use and up to 74% in energy savings over comparable 250W metal halide luminaires, the D-Series Wall is a reliable, low-maintenance lighting solution that produces sites that are exceptionally illuminated.

Ordering Information

EXAMPLE: DSXW1 LED 20C 1000 40K T3M MVOLT DDBTXD

DSXW1 LED

Series	LEDs	Drive Current	Color temperature	Distribution	Voltage	Mounting	Control Options		
DSXW1 LED	10C TO LEDs. (one engine) 20C 20 LEDs (two engines)	350 350 mA 530 530 mA 700 700 mA 1000 1000 mA (1 A) ¹	30K 3000 K 40K 4000 K 50K 5000 K AMBPC Amber phosphor converted	T2S Sype II Short T2M Sype II Medium T3S Sype III Short T3M Sype III Medium T4M Sype III Medium T4M Sype IV Medium TFTM Forward Throw Medium ASYDF Asymmetric diffuse	MVOLT ⁷ 120 ¹ 208 ³ 240 ³ 277 ³ 347 ^{1,4} 480 ^{3,4}	Shipped included (blank) Surface mounting bracket BBW Surface- mounted back box (for conduit entry)	Shipped installed PE Photoelectric cell, button type * DMG 0-10V dimming driver (no controls; wires pulled outside fixture)) PIR 180° motion/ambient light sensor, <15' mtg ht 1/2 PIRH 180° motion/ambient light sensor, 15-30' mtg ht 1/4 PIRHFC3V Motion/ambient sensor, 8-15' mounting height, ambient sensor enabled at 1fc 1/4 PIRHTFC3V Motion/ambient sensor, 15-30' mounting height, ambient sensor enabled at 1fc 1/4 ELCW Ernergency battery backup (includes external component enclosure), non CEC compliant*		

Other Options					uppel).				
Shipped installed Shipped separately				DDBXD	Dark bronze	DSSXD	Sandstone	DWHGXD	Textured white
SF	Single fuse (120, 277 or 347V) 60	BSW	Bird-deterrent spikes	DBLXD	Black	DDBTXD	Textured clark bronze	DSSTXD	Textured sandstone
DF	Double fuse (208, 240 or 480V) 39	WG	Wire guard	DNAXD	Natural aluminum	DBLBXD	Textured black		
HS	House-side shield.10	VG	Vandal guard	DWHXD	White	DNATXD	Textured natural aluminum		
SPD	Separate surge protection	DDL	Diffused drop lens						

Accessories

Ordered and shipped separately

DSXWHS U House-side shield (one per light engine) DSXWBSW U Bird-deterrent spikes

DSXWBSW U Bird-deterrent spikes
DSXW1WG U Wire guard accessory
DSXW1VG U Vandal guard accessory

NOTES

- 1 20C 1000 is not available with PIR, PIRH, PIR1FC3V or PIRH1FC3V.
- 2 MVOLT driver operates on any line voltage from 120-277V (50/60 Hz).
- 3 Single fuse (SF) requires 120, 277 or 347 voltage option. Double fuse (DF) requires 208, 240 or 480 voltage option.
- 4 Only available with 20C, 700mA or 1000mA. Not available with PIR or PIRH.
- 5 Back box ships installed on fixture. Cannot be field installed. Cannot be ordered as an accessory.
- 6 Photocontrol (PE) requires 120, 208, 240, 277 or 347 voltage option. Not available with motion/ambient light sensors (PIR or PIRH).
- 7 Reference Motion Sensor table on page 3.
- 8 Cold weather (-20C) rated. Not compatible with conduit entry applications. Not available with BBW mounting option. Not available with fusing. Not available with 347 or 480 voltage options. Emergency components located in back box housing. Emergency mode IES files located on product page at www.lithenia.com.
- 9 Not available with ELCW.
- 10 Also available as a separate accessory; see Accessories information

D-Series Size 2

1 lbs

(0.5 kg)

d"series

Specifications

LUI	1111	Iall	E

Width:

Depth:

18-1/2" 21 lbs Weight: (9.5 kg (47.0 cm)

10"

(25.4 cm) 7-5/8"

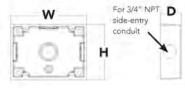
Height: (19.4 cm)

Back Box (BBW)

Width:

Depth:

5-1/2" Weight: (14.0 cm)


1-1/2" (3.8 cm)

4"

Height: (10.2 cm)

+ Capable Luminaire

Туре

This item is an A+ capable luminaire, which has been designed and tested to provide consistent color appearance and system-level interoperability.

- All configurations of this luminaire meet the Acuity Brands' specification for chromatic consistency
- This luminaire is A+ Certified when ordered with DTL® controls marked by a shaded background. DTL DLL equipped luminaires meet the A+ specification for luminaire to photocontrol interoperability1
- This luminaire is part of an A+ Certified solution for ROAM® or XPoint™ Wireless control networks, providing out-of-the-box control compatibility with simple commissioning, when ordered with drivers and control options marked by a shaded background¹

To learn more about A+, visit www.acuitybrands.com/aplus.

- 1. See ordering tree for details.
- 2. A+ Certified Solutions for ROAM require the order of one ROAM node per luminaire. Sold Separately: Link to Roam; Link to DTL DLL

Ordering Information

EXAMPLE: DSXW2 LED 30C 700 40K T3M MVOLT DDBTXD

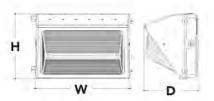
DSXW2 LED

Series	LEDs	LEDs		LEDs		EDs		Ds -		urrent	Color temperature		Distribution		Voltage	Mounting		Control Options		
DSXW2 LED	30C 30 (th	LEDs vo gines) LEDs tree gines)	350 530 700 1000	350 mÅ 530 mA 700 mA 1000 mA ¹ (1.A)	30K 40K 50K AMBPC	3000 K 4000 K 5000 K Amber phosphor converted ²	T2S T2M T3S T3M T4M TFTM	Type II Short Type II Medium Type III Short Type III Medium Type III Medium Type IV Medium Forward Throw Medium	MVOLT 3 120 4 208 4 240 4 277 4 347 4.5 480 4.5	(blank)	ed included Surface mounting bracket ed separately ⁶ Surface- mounted back box (for conduit entry)	Shipped in PE PER PERS PER7 DMG PIRH PIRHFC3V PIRH1FC3V	Photoelectric cell, button type. ¹ NEMA twist-lock receptacle only (control ordered separate) ¹ Five-wire receptacle only (control ordered separate) ¹ Severi-wire receptacle only (control ordered separate) ¹ 0-10v dimming wires pulled outside fixture (for use with an external control, ordered separately) 180° motion/ambient light sensor, <15' mtg ht ^{10,11} 180° motion/ambient sensor, 8-15' mounting height, ambient sensor enabled at 1fc ^{10,12} Motion/ambient sensor, 15-30' mounting height, ambient sensor enabled at 1fc ^{10,12}							

Other Options				Finish (required)					
Shipped installed		Shipped separately 19		DDBXD	Dark bronze	DSSXD	Sandstone	DWHGXD	Textured white
SF	Single fuse (120, 277, 347V)	BSW	Bird-deterrent spikes	DBLXD	Black	DDBTXD	Textured dark bronze	DSSTXD	Textured sandstone
DF	Double fuse (208, 240, 480V)	VG	Vandal guard	DNAXD	Natural aluminum	DBLBXD	Textured black		
HS	House-side shield 1			DWHXD	White -	DNATXD	Textured natural aluminum		
SPD	Separate surge protection (100					

TWR1 LED LED Wall Luminaire

Cátalog Number Notes


Specifications

Width: 12-15/16" (32.9 cm)

Height: 9" (22.9 cm)

Depth: 7-1/2"

Weight: 11.95 lbs (5.42kg)

Introduction

The popular TWR1 luminaire is now available with long-lasting, energy-efficient LED technology. Featuring a classic dayform, the TWR1 LED offers a traditional appearance and is powered by advanced LEDs.

The TWR1 LED luminaire is powerful yet energy efficient, capable of replacing up to a 250W metal halide luminaire while saving up to 86% in energy costs. Offering an expected service life of more than 20 years, the TWR1 LED eliminates frequent lamp and ballast replacements associated with traditional technologies.

Ordering Information

EXAMPLE: TWR1 LED P2 50K MVOLT DDBTXD

Series	Performance Package	Color Temperature	Voltage	Controls	Finish
TWR1 LED	P2 3,450 lumens P3 4,470 lumens P4 5,550 lumens	40K 4000 K ¹ 50K 5000 K ¹	MVOLT ⁷ 347	(blank) No control PE Photo control	DDBTXD Textured dar bronze

NOTES

- Correlated color temperature (CCT) shown is nominal per ANSI C78, 377-2008.
- MVOLT driver operates on any line voltage from 120-277V (50/60 Hz).

FEATURES & SPECIFICATIONS

INTENDED USE

The TWR1 LED combines traditional wall pack design with high-output LEDs to provide an energy-efficient, low maintenance LED wall pack suitable for replacing up to 350W MH fixtures. The traditional shape helps maintain building aesthetics when replacing only a portion of your buildings wall packs. TWR1 LED is ideal for outdoor applications such as carports, loading areas, driveways and parking areas.

CONSTRUCTION

Rugged cast-aluminum housing with bronze polyester powder paint for lasting durability. Door is hinged on the side so door swings out of the way during installation and service. Castings escaled with a one-piece gasket to inhibit the entrance of external contaminants. MYOLT driver operates on any line voltage from 120-277V (50/60Hz). All luminaires have 6kV surge protection. Rated for outdoor installations, -40°C minimum ambient. Please consult factory for surge rating of photocells.

OPTICS

High-performance LEDs maintain up to 90% of light output at 100,000 hours of service life (L90/100,000 hours). Prismatic glass lens designed for superior lighting distribution, uniformity and fixture spacing. See Lighting Facts label and photometry reports for specific fixture performance,

INSTALLATION

Designed for wall mounting above four feet from ground. Housing is configured for mounting directly over a standard 4" outlet box (by others) or for surface wiring via any of three convenient 1/2" threaded conduit entry hubs.

LISTING

UL Listed to U.S. and Canadian safety standards for wet locations. Tested in accordance with IESNA LM-79 and LM-80 standards.

DesignLights Consortium® (DLC) qualified product. Not all versions of this product may be DLC qualified. Please check the DLC Qualified Products List at wood a look on to confirm which versions are qualified.

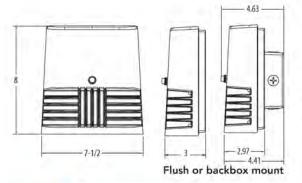
WARRANTY

5-year limited warranty. Complete warranty terms located at:

www.ecumphands.com/fungtomerfiesducres/Terms_and_conditions.es.dk.

Note: Actual performance may differ as a result of end-user environment and application, All values are design or typical values, measured under laboratory conditions at 25 °C. Specifications subject to change without notice.

Catalog Number	
Notes	
Туре	


Specifications

7-1/2" Width: (19 cm)

8" Height: (20.3.un)

3" Depth: (7.62 on)

5 lbs Weight:

Introduction

The OLWX1 is versatile and energy efficient. It is designed to replace up to 250W metal halide while saving over 87% in energy costs. Whether you are mounting it to a recessed junction box, conduit/ through wiring, as an up light, as a down light, or as a flood light - the OLWX1 has all applications covered.

Ordering Information

EXAMPLE: OLWX1 LED 20W 50K

Series	Performance Package	Color Temperature	Voltage	Controls	Finish
OLWX1 LED	13W 13 watts 20W 20 watts 40W 40 watts	40K 4000 K T 50K 5000 K	(blank) MVOLT ² 120 120V 347 347V	(blank) None PE 120V button photocell M	(blank) Dark-bronz

Accessories

OLWX1TS Slipfitter - size 1 OLWX1YK Yoke - size 1 OLWX1THK

- Not available with 347V option.
- MVOLT driver operates on any line voltage from 120-277V (50/60Hz).
- Specify 120V when ordering with photocell (PE option).

FEATURES & SPECIFICATIONS

Knuckle - size 1

The versatility of the OLWX1 LED combines a sleek, low-profile wall pack design with energy efficient, low maintenance LEDs for replacing up to 250W metal halide fixtures. Mounting accessories are available to convert the OLWX1 LED into an energy efficient flood light.

OLWX1 LED is ideal for outdoor applications such as building perimeters, loading areas, driveways and sign and building flood lighting.

CONSTRUCTION

Cast-aluminum housing with textured dark bronze polyester powder paint for durability. Integral heat sinks optimize thermal management through conductive and convective cooling. LEDs are protected behind a glass lens. Housing is sealed against moisture and environmental contaminants (IP65 rated). See Lighting Facts label and photometry reports for details.

Light engine consists of 1 high-efficiency Chip On Board (COB) LED with integrated circuit board mounted directly to the housing to maximize heat dissipation and promote long life (L73/100,000 hours at 25°C). Electronic drivers have a power factor >90% and THD <20% and a minimum 2.5kV surge rating. Flood light mounting accessories include an additional 6kV surge protection device. LEDs are available in 4000K and 5000K CCTs.

INSTALLATION

Easily mounts to recessed junction boxes with the included wall mount bracket, or for surface mounting and conduit entry - with the included junction box with five 1/2" threaded conduit entry hubs. Flood light mounting accessories (sold separately) include knuckle, integral slipfitter and yoke mounting options. Each flood mount accessory comes with a top visor and vandal guard. Luminaire may be wall or ground mounted in downward or upward orientation.

LISTINGS

UL Listed to U.S. and Canadian safety standards for wet locations. Rated for -40° C minimum ambient. Tested in accordance with IESNA LM-79 and LM-80 standards. DesignLights Consortium® (DLC) qualified product. Not all versions of this product may be DLC qualified. Please check the DLC Qualified Products List at s org to confirm which versions are qualified.

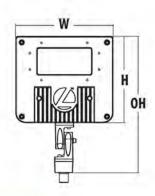
WARRANTY

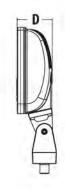
5-year limited warranty. Complete warranty terms located at:

Note: Actual performance may differ as a result of end-user environment and application. All values are design or typical values, measured under laboratory conditions at 25°C. Specifications subject to change without notice.

D-Series Size 1

LED Flood Luminaire





Catalog Notes Туре

Specifications

0.6 ft2 EPA: (0.05 m!)3-1/8" Depth: (8.0 cm)8-7/8" Width: (22.4 cm) 7-3/4" Height: Overall 12" Height (30.5 cm) 7.2 lbs Weight:

Introduction

D-Series Size 1 Flood features advanced optics and precision illumination in a sleek and compact form that seamlessly blends with the environment. State of the art reflector design with cutting edge chip-on-board LED technology produces excellent uniformity using precision beam patterns. Provides long-life replacement for 70-150W metal halide floodlights offering up to 77% energy savings with expected service life of over 100,000 hours.

Ordering Information

EXAMPLE: DSXF1 LED P1 40K MSP MVOLT THK DDBXD

Series	Performance Package	Color Temperature	Distribution	Voltage.	Mounting		Options		Finish tree	uirea)
OSXF1 LED	P1 P2	30K 3000K 40K 4000K 50K 5000K	NSP Narrow spot MSP Medium spot MFL Medium flood FL Flood WFL Wide flood WFR Wide flood, rectangular HMF Horizontal flood	MVOLT 1 120 2 208 2 240 2 277 2 347 2	Shipped in THK IS YKC62 Shipped se DSXF1/2TS FTS.CG6	Knuckle with 1/2" NPS threaded pipe Integral slipfitter (fits 2-3/8" O.D. tenon) Yoke with 16-3 SO cord	PE PEX SF DF DMG	Photocontrol, button style M Photocontrol external threaded adjustable ³ Single fuse (120, 277, 347V) ² Double fuse (208, 240) ² 0-10V dimming driver (no controls) ed separately ⁸ Upper/bottom visor (universal) Full visor Vandal quard	DDBXD DBLXD DNAXD DWHXD	Dark bronze Black Natural aluminu White

Accessories

Ordered and shipped separately

DSXF1/2TS DDBXD U Slipfitter for 1-1/4"to 2-3/8"OD tenons: mates with 1/2"threaded knockle (specify finish) FRWB DDBXD U Radius wall bracket, 7-3/8° OD tenon (specify FSPB DDBXD U Steel square pole bracket, 7-3/8*00 tenon (specify finish) Lipper/bottom visor accessory (specify finish) DSYFIEV DORYD II Full visor accessory (specify finish) DSXF1VG U Vandal quard accessory

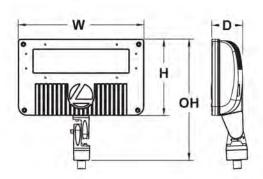
> For more mounting options, visit our Dages

Stock configurations are offered for shorter lead times:

aministră (sve /limin	Stock Part Number	Cl Code
DSXF1 LED P1 40K WFL MVOLTTHK DDBXD	DSXF1 LED P1 40K	*240TJH
DSXFT LED P1 50K WFL MVOLTTHK DDBXD.	DSXF1 LED P1 50K	*240TJG
DSXF1 LED P1 40K WFL MVOLT YKC62 DDBXD	DSXF1 LED P1 40K YK	*263KL9
DSXF1 LED P1 50K WFL MVOLTYKC62 DDBXD	DSXF1 LED P1 50K YK	*263UJE
DSXF1 LED P2 40K WFL MVOLT THK DDBXD	DSXF1 LED P2 40K	*240TJL
DSXF1 LED P2 SOK WFL MVOLT THK DDBXD	DSXF1 LED P2 50K	*240TJJ
DSXF1 LED P2 40K WFL MVOLT YKC62 DDBXD	DSXF1 LED P2 40K YK	*263KLA
DSXF1 LED P2 50K WFL MYOLTYKC62 DDBXD	DSXF1 LED P2 50K YK	*263UJG
DSXF1/2 Slip-fitter Tenon Accessory DDBXD	DSXF1/2TS DDBXD U	*216G5K

- MVOLT driver operates on line voltage from 120-277V
- Single fuse (SF) requires 120V, 277V or 347V. Double fuse (DF) requires 208V, 240V or 480V.
- Also available as accessories; see Accessories information at left.
- Rated 25C maximum ambient for performance package P2. Specify PEX for higher ambient temperatures.
- Photocontrol (PE, PEX) requires 120, 208, 240, 277 or 347 voltage option
- 6. Must specify 120, 277 or 347 voltage option.

D-Series Size 2 LED Flood Luminaire



Catalog Number Notes Type

Specifications

0.8 ft2 EPA: (0.05 m²) 3-1/8" Depth: (8.0 cm) 12-7/8" Width: 7-3/4" Height: Overall 12" Height (30.5 cm) 10.5 lbs Weight:

Introduction

D-Series Size 2 Flood features advanced optics and precision illumination in a sleek and compact form that seamlessly blends with the environment. State of the art reflector design with cutting edge chip-on-board LED technology produces excellent uniformity using precision beam patterns. Provides long-life replacement for 150-250W metal halide floodlights offering up to 74% energy savings with expected service life of over 100,000 hours.

Ordering Information

EXAMPLE: DSXF2 LED P1 40K MSP MVOLT THK DDBXD

Series	Performance Package	Color Temperature	Distribution	Voltage	Mounting	Options	Finish (required)
DSXF2 LED	P1 P2 P31.2.7	30K 3000K 40K 4000K 50K 5000K	NSP Narrow spot MSP Medium spot MFL Medium flood FL Flood WFL Wide flood WFR Wide flood, rectangular HMF Herizontal flood	MVOLT ⁴ 120 ⁵ 208 ⁵ 240 ⁵ 277 ⁵ 347 ³ 480 ^{8,6}	Shipped included THK Knuckle with 1/2"NP threaded pipe YKC62 Yoke with 16-3 SO co IS Integral slipfitter (fits 2-3/8" O.D. tenon). Shipped separately DSXF1/2TS Tenon slipfitter (2-3/6). THK required/ FTS CG6 Tenon slipfitter (2-7/6). Q.D. YKC62 required/	PEX Photocontrol external threaded adjustable* DMG 0-10v dimming wires pulled outside fixture (for use with an external control, ordered separately) SF Single fuse (120, 277, 347V) * DF Double fuse (208, 240, 480V) * SPD10KV Separate surge protection* Shipped separately*	DDBXD Dark brong DBLXD Black DNAXD Natural aluminum DWHXD White

Accessories

Ordered and shipped separately

DSXF1/2TS DDBXD U
Slipfitler for 1-1/4* to 2-3/8* 00 tenons; mates with 1/2* threaded knuckle (specify finish)

FTS CG6 DDBXD U
Slipfitler for 2-3/8* to 2-7/8* 00 tenons; mates with yoke mount specify finish)

FRWB DDBXD U
Radius wall bracket, 2-3/8* 00 tenon (specify finish)

DSXF2UBY DDBXD U
Upper/bottom vitor accessory (specify finish)

DSXF2VB DDBXD U
Full vitor accessory (specify finish)

DSXF2VB UDBXD U
Andtal quant accessory

Specify finish)

For more mounting options, visit our Floodlighting Accessories pages

Stock configurations are offered for shorter lead times:

Standard Port Hamilton	Stock Part Number	Cl Code
DSXF2 LED P1 40K WFL MVOLT THK DDBXD	DSXF2 LED P1 40K	*240TJ9
DSXF2 LED P1 50K WFL MVOLTTHK DDBXD	DSXF2 LED P1 50K	*240TJ8
DSXF2 LED P1 40K WFL MVOLT YKC62 DDBXD	DSXF2 LED P1 40K YK	*263KLF
DSXF2 LED P1 50K WFL MVOLT YKC62 DDBXD	DSXF2 LED P1 50K YK	*263UJK
DSXF2 LED P2 40K WFL MVOLT THK DDBXD	DSXF2 LED P2 40K	*240THT
DSXF2 LED P2 50K WFL MVOLT THK DDBXD	DSXF2 LED P2 50K	*240TJC
DSXF2 LED P2 40K WFL MVOLT YKC62 DDBXD	DSXF2 LED P2 40K YK	*263KLG
DSXF2 LED P2 50K WFL MVOLT YKC62 DDBXD	DSXF2 LED P2 50K YK	*263UJM
DSXF1/2 Slip-fitter Tenon Accessory DDBXD	DSXF1/2TS DDBXD U	*216G5K

NOTES

- 1. Performance package P3 rated 35C maximum ambient.
- Not available with PE (use PEX).
- 3. Rated 25C maximum ambient with SPD10KV.
- MVOLT driver operates on line voltage from 120-277V.
 Single fuse (SF) requires 120V, 277V or 347V. Double
- fuse (DF) requires 208V, 240V or 480V.
- Not available with PE and PEX.
- Also available as accessories; see accessories information at left.
- Rated 25C maximum ambient for performance package P2. Not available in performance package P3. Specify PEX for higher ambient temperatures.
- Photocontrol (PE, PEX) requires 120, 208, 240, 277 or 347 voltage option.
- Cannot exceed 25°C maximum ambient when used with P3 performance package.

HID REPLACEMENT LED LAMPS

A smaller, more versatile design to fit more fixtures

The G2 DirectDrive HID LED lamps are shorter and narrower, allowing them to fit into more fixtures than ever before.

Highest efficacy in the industry: Up to 150 lm/W

By separating the driver from directly connecting to the heat sink, we've maximized efficiency and protected the LED from overheating. This allows the G2 DirectDrive HID replacement LED lamps to have the highest lumens per watt in the industry.

Catalog Number	Rated Lamp Wattage	Lumens	Metal Halide Equivalent Wattage	Input Voltage	Base Type	CRI	IP Rating	Efficacy
NEW G2								
KT-LED12HID-E26-8xx-D*	12W	1,740	50W	120-277V	Medium E26	>80	IP64	145 lm/W
KT-LED18HID-E26-8xx-D**	18W	2,610	70W	120-277V	Medium E26	>80	IP64	145 lm/W
KT-LED27HID-E26-8xx-D /G2	27W	3,915	100W	120-277V	Medium E26	>80	1P64	145 lm/W
KT-LED27HID-EX39-8xx-D /G2	27W	3,915	100W	120-277V	Mogul EX39	>80	IP64	145 lm/W
KT-LED36HID-E26-8xx-D /G2	36W	5,400	150W	120-277V	Medium E26	>80	IP64	150 lm/W
KT-LED36HID-EX39-8xx-D /G2	36W	5,400	150W	120-277V	Mogul EX39	>80	IP64	150 lm/W
KT-LED45HID-E26-8xx-D /G2	45W	6,750	175W	120-277V	Medium E26	>80	IP64	150 lm/W
KT-LED45HID-EX39-8xx-D /G2	45W	6,750	175W	120-277V	Mogul EX39	>80	IP64	150 lm/W
KT-LED54HID-EX39-8xx-D /G2	54W	8,100	250W	120-277V	Mogul EX39	>80	IP64	150 lm/W
NEW! KT-LED63HID-EX39-8xx-D	63W	9,450	250W/320W	120-277V	Mogul EX39	>80	IP64	150 lm/W
G1								
KT-LED80HID-EX39-8xx-D	80W	11,300	320W	120-277V	Mogul EX39	>85	IP64	141 lm/W
KT-LED100HID-EX39-8xx-D	100W	14,100	400W	120-277V	Mogul EX39	>85	IP64	141 lm/W

*8xx denotes several color temperatures available. 80W and 100W lamps are not available in 3000K.

800 Series, 4000K 800 Series, 3000K 850 800 Series, 5000K 830 840

With SmartCool technology, a thermal sensor in the lamp activates during extreme high temperature conditions. Power to the lamp is reduced by up to 20% to cool the lamp and maintain lamp life. Once the sensor reaches an acceptable temperature, the lamp gradually returns to full light output. Included in 54W, 63W, 80W, and 100W DirectDrive HID LED lamps.

ULTRA LED™ RT5/6 HO

Recessed Downlight Kit

SYLVANIA ULTRA RT5/6 HO is a universal input voltage 5" and 6" compatible LED recessed downlight kit that creates high performing white light and is optimized for new construction and retrofit applications utilizing pin based compact fluorescent lamps. Installation is done quickly and easily in most standard six-inch frames.

The RT5/6 HO downlight is offered in 650 lumen, 700 lumen, 900 lumen and 1500 lumen options and achieves up to 88 lumens per watt.

The RT5/6 HO is designed to deliver light output comparable to traditional 1x13W, 1x18W, 1x26W and 2x26W pin based compact fluorescent luminaires.

Application Information

Application Notes

- 1. Operating temperature range between -4°F and +104°F (-20°C and +40°C).
- 2. Suitable for dry, damp or wet indoor or outdoor locations.
- 3. Compatible with Philips Bodine ELI-S-20 Emergency Lighting Micro Inverter.
- 4. Designed to install in standard 6" CFL mounting frame. For a list of compatible housings, please refer to www.sylvania.com/RT6.
- 5. For detailed warranty information, please see www.sylvania.com/RT6.
- The RT5/6HO 650 and 700 lumen is compatible with 120V Phase cut dimmers and 277V Leviton Dimmer model IPX06-70Z.
- The RT5/6 HO 900 and 1500 lumen are compatible with Leviton 0-10V dimmer model IP710-DL.
- Installation performed as a stand-alone kit (without frame) is recommended for hard ceiling. Installation of a recessed incandescent frame is recommended for tiled ceiling application for proper support of the retrofit kit.

Key Features & Benefits

- Three input voltages:
 - -120V
 - 120-277V Universal
 - -347V
- Lumen package:
 - 650 lumens @ 8 watts
 (line voltage dimmable)
 - 700 lumens @ 8 watts
 (line voltage dimmable)
 - 900 lumens @ 13 watts(0-10V Dimmable)
 - 1500 lumens @ 17 watts (0-10V Dimmable)
- Replacement for 13W, 18W, 26W and 32W CFL pin based lamps
- Fits in standard 5" and 6" CFL mounting frame
- CCT: 2700K, 3000K, 3500K
 & 4000K
- CRI of >80 and >90

- 35,000 and 50,000 hour life (L76)
- Suitable for dry, damp and wet indoor or outdoor locations (650lm Indoor only)
- IC rated (except 650lm version)
- UL1598 Listed and Classified for stand-alone and retrofit applications
- Reduces energy consumption up to 34%
- Lasts up to 4 times longer than compact fluorescent lamps
- No warm-up time, instant-on with full light output and stable lamp to lamp color
- Integrated white trim and metal conduit adaptor (included) for direct replacement
- Suitable for use in 8" applications using optional trim extender accessory

Product Offering

Ordering Abbreviation	Wattage	CCT
LED/RT5/6/HO/650	8	3000K, 4000K
LED/RT5/6/HO/700	8	2700K, 3000K, 3500K, 4000K
LED/RT5/6/HO/900	13	2700K, 3000K, 3500K, 4000K
LED/RT5/6/HO/1500	17	3000K, 3500K, 4000K

Specifications and Certifications

ULTRA LED™ RT8

Recessed Downlight Kit

The SYLVANIA ULTRA LED RT8 unit is an eight-inch LED recessed downlight kit creating high performing white light which is optimized for new construction and retrofit applications. Installation is done quickly and easily in most standard eight-inch frames.

Quality of Light

The SYLVANIA ULTRA LED RT8 provides excellent color rendering (up to 90 CRI), and a wide selection of color temperatures (3000K, 3500K, 4000K, 5000K). LEDs have virtually no UV or infrared radiation to damage or fade furnishings, art or other objects.

Optical Design

Optical design efficiently directs light output in an 80° beam angle with low glare.

Key Features & Benefits

- 0-10V Dimmable Lumen Packages:
 2000 lumens @ 24W (120/277V)
 3000 lumens @ 40W (120/277V)
 5000 lumens @ 54W (120/277V)
 8000 lumens @ 92W (120/277V)
- Non-Dimmable Lumen Packages:
 2000 lumens @ 23W (347V)
 5000 lumens @ 50W (347V)
- Replacement for 32W and 42W
 CFL pin base lamps
- Fits in standard 8" CFL mounting frame
- CCT: 3000K, 3500K, 4000K, 5000K (see offerings below)
- CRI of up to 90
- 50,000 hour life (L₇₀)
- Suitable for dry, damp and wet locations
- UL1598 Listed and Classified for stand-alone and retrofit applications

- Reduces energy consumption up to 50%
- 120-277V or 347V input voltage
- Lasts up to 3 times longer than CFL pin base lamps
- No warm-up time, instant-on with full light output and stable lamp to lamp color
- Integrated white trim, white baffle reflector and metal conduit adaptor (included) for direct replacement
- Suitable for use in 10" applications using optional trim extender accessory
- Conduit attached for easy installation
- 8000lm product has a remote driver

Product Offering

Ordering Abbreviation	Wattage	Color Temperature	CRI
LED/RT8/2000	24	3000K, 3500K, 4000K	82
LED/RT8/2000-347V	23	3000K, 4000K, 5000K	82
LED/RT8/3000	40	3000K, 3500K, 4000K	90
LED/RT8/5000	54	3000K, 3500K, 4000K	82
LED/RT8/8000	92	3000K, 3500K, 4000K	82
LED/RT8/5000-347V	50	4000K	82

Application Information

Applications

- Healthcare
- Hospitality
- Office
- Property Management
- Residential
- Retail

Specifications and Certifications

Omni-directional 3-way and dimmable A shape bulbs,

an energy saving alternative to popular incandescents

Philips LED A-shape dimmable and 3-way lamps are a great alternative to standard incandescent lamps. The unique lamp design provides omni-directional light with excellent dimming performance.

These lamps are ideal for decorative and ambient lighting in retail outlets, hotels, restaurants, government buildings, and multi-unit residences.

A classic design for a familiar look

Philips LED glass PAR Lamps with single optic technology provide the familiar look and feel traditional halogen PARs while using a fraction of the energy.

Benefits

- Saves 85% energy When comparing a 13.5W PAR38 LED lamp to a 90W halogen PAR38 lamp[†]
- Long life lowers maintenance costs by reducing re-lamp frequency
- · Will not fade colors, avoids inventory spoilage
- · Contains no mercury
- · Suitable for use in enclosed fixtures

Features

- 25,000-hour claimed lifetime for Energy Star®Qualified lamps*
- 50,000-hour LED lifetime**
- Glass finish for a look and feel replicating traditional halogen PARs
- 3-year limited warranty depending upon operating hours[‡]

This is real compatibility

Philips InstantFit LED 4-pin lamps make the transition to LED from CFL 4-pin lamps as simple as replacing a lamp. With both vertical and horizontal options and a wide array of color temperatures, the InstantFit LED lamps can quickly and effectively replace compact fluorescent lamps. The horizontal version includes a rotatable end cap to ensure the light is correctly aimed.

Benefits

- Proven over 40% energy savings² over fluorescent means a satisfed customer and no time wasted going back to a job
- Lifetime delivered average life rating of 50,000 hours³ means satisfied customers
- Easy replacement Replace conventional 32W and 26W 4-pin (PL-C & PL-T) lamps

Features

- Rotatable end cap ensures proper lamp alignment inside the fixture (Horizontal SKUs only)
- Long life 50,000 hour life³ means less maintenance than fluorescent
- Proven product history and a company with a long history of innovation and reliability in the lighting industry

CNY LED LED Canopy/Ceiling Luminaire

Catalog Number	
Notes	
Туре	

Specifications

	CNY LED PO/P1/P2	CNY LED P3/P4
Width:	10"	14"
Height:	4.5"	6"
Depth:	10"	14"
Weight:	6.5lbs	13lbs

Introduction

The CNY LED canopy luminaires are energy efficient and budget friendly, perfect for replacing up to 400W metal halide luminaires while saving up to 80% energy costs. Quick mount mechanism significantly reduces the installation time. An LED array and translucent lens create uniform and visually comfortable illumination, CNY LED luminaires are DLC Premium listed and deliver quick payback!

Ordering Information

EXAMPLE: CNY LED P1 50K MVOLT DDB

CNY LED

Series	Performance Package	Color Temperature ²	Voltage	Finish
CNY LED	P0 3,500 lumens P1 4,500 lumens P2 6,600 lumens P3 11,100 lumens P4 14,000 lumens	40K 4000K 50K 5000K	MVOLT ³ 120-277V	DDB Dark bronze WH White

Accessories

Ordered and shipped separately

CNYBCP 14 Inch x 14 Inch Beauty Cover Plate

NOTES

- 1. Not available in 50K.
- Correlated color temperature (CCT) shown is nominal per ANSI C78, 377-2008. Not available in P1 performance package.
- 3. MVOLT driver operates on any line voltage from 120-277V (50/60 Hz).
- 4. Available with P0 or P1 only.

FEATURES & SPECIFICATIONS

INTENDED USE

CNY LED luminaires are ideal, energy-efficient replacements for up to 400W MH canopy or ceiling luminaires. The CNY LED provides years of maintenance-free illumination for schools, malls, offices, parking areas, covered walkways and loading docks.

Cast-aluminum, corrosion-resistant housing with polyester powder paint for lasting durability. Castings are sealed with a one-piece gasket. Rated for outdoor installations, -40°C minimum ambient. Frosted lens is designed for uniform light distribution.

Includes an MVOLT (120-277V) driver. LEDs maintain 70% of light output at 50,000 or more hours of service life (L70/50,000 hours).

Mounts to a recessed junction box or surface mount with three conduit entry points. Can be pendant mounted with 34 NPT pendant stem provided by others. Quick mount mechanism significantly reduces installation time - no need to open the luminaire for installation.

UL Listed to U.S. and Canadian safety standards for wet locations. Tested in accordance with IESNA LM-79 and LM-80 standards. DesignLights Consortium® (DLC) Premium qualified product. Not all versions of this product may be DLC Premium qualified or DLC qualified. Please check the DLC Qualified Products List at www.designlights.org/QPL to confirm which versions are qualified. Can be used to comply with California Title 24 Part 6 High Efficacy LED light Source Requirements.

WARRANTY

Five-year limited warranty. Complete warranty terms located at: www.acuitybrands.com/CostomerResources/Terms_and_conditions.asp.o

Note: Actual performance may differ as a result of end-user environment and application. All values are design or typical values, measured under laboratory conditions at 25 °C. Specifications subject to change without notice.

FEATURES & SPECIFICATIONS

INTENDED USE — The JHBL is constructed to withstand moisture, dust, and chemical contact. Common applications for JHBL include demanding environments such as manufacturing, foundries, natatoriums, gymnasiums, automotive manufacturing, packaging, and cold storage. Ideal one-for-one replacement of conventional HID and fluorescent high bay systems. Certain airborne contaminants can diminish the integrity of acrylic and/or polycarbonate. Click here for Acrylic-Polycarbonate Compatibility table for suitable uses.

Certain airborne contaminants may adversely affect the functioning of LEDs and other electronic components, depending on various factors such as concentrations of the contaminants, ventilation, and temperature at the end-user location. <u>Click here for a list of substances that may not be suitable for interaction with LEDs and other electronic components.</u>

CONSTRUCTION — Electrical housing is off-set from the optical assembly for maximum heat dissipation. Rugged die-cast aluminum housing and corrosion resistance. Housing utilizes die cut rubber gasketing to seal the optical and electrical compartments from dust and moisture. Wire guard attachment points are precast in optical housing. Housing and optics maintain IP65 rating with all internal components including optional integrated sensor.

Finish: Super durable TGIC thermoset powder coat finish provides 1500 hours salt/fog rating. CR (corrosion resistant) optional finish is a five stage pre-treating can painting process tht uields over 5,000 hours salt rating per ASTM B117.

OPTICS — One piece precision molded .375" thick borosilicate glass that is silicone rubber gasketed. Optional non-silicone gasket available and recommended for automotive applications.

ELECTRICAL — Non-class 2 drivers standard for maximum life at high temperatures. Less than 10% THD and PF > 90. Luminaire Surge Protection Level: Designed to withstand up to 6kV/3kA per ANSI C82.77-5-2015. Lumen maintenance is 90% at 60,000 hours. L70 greater than 100,000 hours. 0-10V dimming standard for a dimming range of 100% to 10%.

WIRELESS NETWORKING — XPoint[®] Wireless technology creates a mesh network to ensure communication between fixtures, sensors and wall stations facility-wide. This option provides superior lighting management capabilities including granular control, configuration and custom grouping for increased energy savings.

Integrated Bluetooth occupancy sensor: The SBG BTP is bluetooth enabled with dimming photocells. Allows you to change settings in the field using the VLP app.

INSTALLATION — 3/4 inch NPS threaded hub standard that is suitable for pendant, hook or loop mounting with appropriate mounting accessories. See accessories for available options.

LISTINGS — CSA certified to US and Canadian safety standards. Wet location listed. IP65 rated. Suitable for use in ambient temperatures from -40°F (-40°C) to 149°F (65°C). Covered ceiling not required to maintain wet location listing or IP ratings.

DesignLights Consortium" (DLC) qualified product. Not all versions of this product may be DLC qualified. Please check the DLC Qualified Products List at www.designlights.org to confirm which versions are qualified.

WARRANTY — 5-year limited warranty. Complete warranty terms located at: <u>www.acuitybrands.com/resources/terms-and-conditions</u>

Note: Actual performance may differ as a result of end-user environment and application. All values are design or typical values, measured under laboratory conditions at 25 °C. Specifications subject to change without notice.

Catalog Number

Notes

Type

LED IP Rated High Bay

JHBL

SA+ Capable Luminaire

This item is an A+ capable luminaire, which has been designed and tested to provide consistent color appearance and out-of-the-box control compatibility with simple commissioning.

- All configurations of this luminaire meet the Acuity Brands' specification for chromatic consistency
- This luminaire is part of an A+ Certified solution for nLight® or XPoint™ Wireless control networks marked by a shaded background*

To learn more about A+, visit www.acuitybrands.com/aplus.

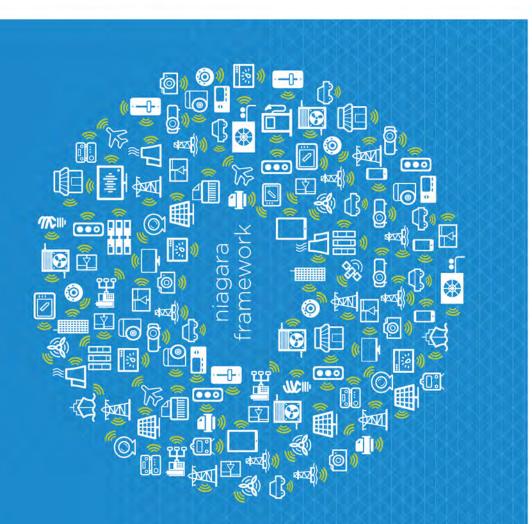
*See ordering tree for details

The Bluetooth $^{\rm B}$ word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. used under license.

Manufacturer Specification Sheets

ECM 3: Recommission Energy Management Systems

Investment Grade Audit



This page is intentionally left blank.

TRIDIUM'S NIAGARA FRAMEWORK' CONNECTING MINGS AND MACHINEST

For more than 15 years, Tridium's Niagara Framework has fundamentally changed the way devices and systems connect to people—and the ways people can control and optimize those machines.

With nearly half a million instances worldwide, Niagara is quickly becoming the operating system of the Internet of Things. Its open API, open distribution business model and open protocol support give you the freedom to choose how you work, what you build and with whom you partner. Niagara enables you to connect and control devices, while normalizing, visualizing and analyzing data from nearly anywhere or anything.

From buildings and data centers to manufacturing systems and smart cities, the Niagara Framework improves strategic decision-making, allowing for optimized performance and cost reductions that can help businesses be more competitive and more profitable. And with the release of Niagara 4 and the JACE* 8000 controller, the opportunity to achieve operational excellence is even greater than before.

Niagara's truly open environment harnesses the power of the Internet of Things in ways never before imagined or possible

NIAGARA 4

performance

use. Now end users can directly access, analyze and act on a wide range of operational data. A truly open framework, Niagara 4 delivers a variety of notable improvements to help businesses take full advantage of the exciting ways. It's less reliant on browser plug-ins, faster and easier to nternet of Things, including advanced visualization and new search, Niagara 4 builds on the legacy of the Niagara Framework® in new and security and navigation tools.

Niagara 4 is less reliant on browser plug-ins, featuring an intuitive HTML5 interface

AN ALL-NEW USER INTERFACE

new interface. Modern and easy to use, the platform utilizes HTML5 to provide an array of rich features. Our powerful new UI framework makes the user Niagara 4 features a bold and intuitive experience simpler and more robust, giving users maximum control of their data and decisions.

visualization, role-based security, real-time to find and visualize data points quickly New features include a built-in search based on a powerful tagging system. troubleshooting and rapid navigation. function, customizable charting and The optimized workflow allows users

maintain customized views for end users. for systems integrators to create and a user interface that makes it easier Niagara 4's use of HTML5 provides

MORE DATA AT YOUR FINGERTIPS

own. Because devices, systems and data points can be tagged in Niagara 4. users can easily conduct a station-wide search of the most important elements ntegrators can provide an interface that empowers users to do more on their

data in a navigation tree. Using a standardized dictionary of tagged elements users choose which points to monitor directly. Users can utilize the standardized This one-tool solution utilizes tag hierarchies to automatically integrate all dictionary to drive consistency in their building automation systems.

their desktop, tablet or mobile device. Systems integrators no longer necessarily changes. Building real-time dashboards is straightforward, allows for immediate charts, allowing them to instantly find and display critical information from With a simple point-and-click or drag-and-drop, users can create customized need to re-engineer new dashboards each time a customer requirement troubleshooting and quickly displays data with attractive visualizations.

POWERFUL SECURITY

in motion and sensitive data at rest are encrypted. Niagara 4 also uses Role-Based Niagara 4 takes a "defense-in-depth" approach to Internet of Things security. default. Authentication requires users to choose strong credentials, and both data error-prone. Niagara 4 also can be integrated with existing enterprise identity and Building on the security of previous Niagara versions, Niagara 4 is secure by Access Control (RBAC), making user permissions easy to configure and less access management systems, such as LDAP and Kerberos. All user actions and security-related events are recorded in Niagara's audit log for traceability.

EASIER INTEGRATION

a template is made, it can be redeployed as often as needed in other instances templates which then can be quickly created and reused. In other words, once quickly, and allows applications to be prebuilt against a set of standardized The result is not only a more functional design for users but also reduced Niagara 4's new templating feature enables tags to be applied to devices ntegration time across the board.

FASTER, MORE POWERFUL DEVELOPMENT

training in the Niagara user interface is reduced—anyone familiar with open Web and public APIs make it easier to extend, develop and build upon the framework development can now create a custom UI in Niagara. Niagara 4's new features BajaScript 2.0, semantic data modeling via tags and other ready-made tools to greatly speed and support development, in addition, the need for specialized Developers will find improved documentation, a rich open API library,

key features

- Modern UX framew language (HTML5)
- dashboards
- · Advanced charting and visa
- Data tagging

Tag-based navigation

- Device templating
- Data cleansing capabilities
- · Niagara station search
- Workbench workflow imp
- Role-Based Access Control (RBAC)
- Improved UI developer experience Pluggable authentication sche
- Station templating

(BajaScript 2.0)

Niagara AX to Niagara 4 station

JACE 8000 CONTROLLER

global design a modular approach 4

features a new global design that functions with legacy systems and platform: the JACE 8000 controller. This "next-generation" controller Optimized for Niagara 4, Tridium has created an all-new hardware has the ability to scale for future needs.

EFFICIENT GLOBAL DESIGN

integrate and deploy. Tool-less installation with expansion capability reduces on engineering solutions, not assembling components. And their lives will be installation complexity and improves flexibility. Systems integrators can focus simplified with a global power supply and improved access to standard enclosures The new, modular design of the JACE 8000 controller makes it easy to install,

WIRELESS CAPABILITY

is configurable as an access point so that mobile phones and tablets can display information and advanced graphics. Expansion also is available when interfacing next generation of wireless sensors and devices. The JACE 8000 controller also Standard Wi-Fi offers enhanced wireless capability when interfacing with the with other wireless fieldbuses seen in connected buildings.

OPTIMIZED FOR NIAGARA 4

visualization, a common design language, better reporting, robust security and adds to the enhanced user experience, maximizing Niagara 4's key advantages: pure Web interface based on HTML5 with HTML5 views, charting and data The JACE 8000 controller leverages the exciting new features of Niagara 4. It improved device management.

and high-powered performance, the JACE 8000 controller is a dramatic With simple configuration, tool-less installation, low-cost integration evolution in connecting and controlling devices worldwide.

- Powerful Niagara 4 hardware platform with easy software upgrade capability
- easy installation

Modular hardware design for fast and

- Tool-less installation
- Expandable with up to four option
- Native WI-Fi capability
- 24VAC/DC-standard global
- Easy to select the right capacity
- Intuitive user interface
- Rich choice of different colors. materials and finishes for differentiated OEM brand dentification

compatibility summary

to be easy to add to, or upgrade from, your current Niagara-based systems.

Tridium has engineered Niagara 4 and the new JACE 8000 controller

conversion

seamless

NIAGARA AX

Fox network compatibility between Niagara AX and Niagara 4

Niagara Driver Framework still supported

- Station conversion tool to convert
 Niagara AX stations to Niagara 4 stations (.bog files)

Public APIs

third-party vendors to provide

- Niagara 4 will run on any JACE with HotSpot VM (J3, J6, J6E, J7)
 - Niagara 4 will run on any JACE 8000 controller

open 4 the internet of things

The reach of Tridium's Niagara Framework® is global—and growing daily. Our pioneering innovations have created a large and active community of innovative developers, integrators, consultants, manufacturers, resellers and end users who understand that Niagara is an essential part of the Internet of Things.

That's the power of open, and the future of innovation.

Niagara 4 and the JACE* 8000 controller are available through a wide variety of original equipment manufacturers. Our open distribution business model and open protocol support allow a vendor-neutral application compatible with devices and systems throughout the world.

To learn more about how to purchase, install and start using Niagara 4 and the JACE 8000 controller, or if you are an original equipment manufacturer and would like to add them to your suite of offerings, please contact us.

804.747.4771 Corporate HQ / 877.305.1745 Customer Support

tridium.com

Copyright @ 2015 Tridium Inc. All rights reserved.

Information and/or specifications published here are current as of the date of publication of this document. Tridium, Inc. reserves the right to change or modify specifications without prior notice. The latest product specifications can be found by contacting our corporate headquarters, Richmond, Virginia. Products or features contained herein may be covered by one or more U.S. or foreign patents. This document may be copied only as expressly authorized by Tridium in writing. It may not otherwise, in whole or in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable form.

Andover Continuum™

Family of User Interfaces

Monitor, Control and Configure from anywhere!

The Andover Continuum™ system takes integration to the next level by controlling climate, security, lighting, and energy all from a single system. TAC has created a family of user interfaces for the Andover Continuum system that puts this powerful integrated control system in your hands from wherever you are.

Andover Continuum Family of User Interfaces Features

PRODUCT AT A GLANCE

- Powerful User Interfaces for controller climate, security, lighting and energy from a single system
- An interface for all users Guards, Receptionists, Department Managers, Facility Managers, Building Owners, Technicians
- Support for IT environments MS Windows XP, MS Windows Mobile, MS Internet Explorer, MS SQL, MS MSDE
- Support for open standards XML, LDAP, ODBC, OLE, SNMP, BACnet
- Import and synchronize personnel records for HR databases with ease using LDAP or CSV files
- Monitor live and recorded video from a Digital Video Management System
- Support for wired and wireless Ethernet networks
- Support for Andover Continuum Infinet and BACnet networks – wired or wireless
- Powerful interfaces for graphics, schedules, trends, reports, alarms, personnel, programming and more

Whether you are viewing graphics from your office PC, checking alarms from a web browser at home or servicing equipment with a PocketPC, there's a TAC user interface that gives you access and control of the task at hand. Experience what thousands of other installations have enjoyed for years from TAC.

IT Friendly and Open

The Andover Continuum user interfaces are designed to participate within your existing corporate IT network. They support both wired and wireless TCP/IP connections and utilize the standard Microsoft products (e.g. MS Windows XP, MS Windows Mobile, MS Internet Explorer, MS Internet Information Server, MS SQL Server, MS MSDE). Installation is therefore simple and quick.

The workstations can exchange data using open communications standards (BACnet, XML, LDAP, ODBC, OLE, SNMP) permitting Andover Continuum to be synchronized with third party systems such as those for human resources, financial, utilities, reporting, and background checking.

For remote sites, the Andover Continuum workstations can optionally dial-out via modem or automatically answer a call from a remote site in alarm.

Secure Communications with 192-BIT IPSEC/IKE Encryption and SSL

To assure your building runs as planned without interruptions, the Andover Continuum system can be configured for a high level of encryption and authentication between workstations, controllers, servers and web browsers.

Communications between the workstations, controllers and database servers can utilize 192-bit Internet Security Protocol (IPSec) and Internet Key Exchange Protocol (IKE) to assure confidential and tamper-proof communications over the Ethernet. Web communications are also secure when Secure Socket Layers (SSL) between the web browser and the web server are configured.

Andover Continuum Family of User Interfaces Features (continued)

TAC takes security seriously with these secure authentication and encryption methods. Combined with a user logon system that partitions access to the system so the user can only view and edit the equipment and data they are in charge of, the Andover Continuum system protects your building and your investment.

CyberStation Full-Featured Interface

As a complete user interface for the Andover Continuum system CyberStationTM can be used to commission, configure, program, and monitor every Andover Continuum Infinet and BACnet field device, sensor and output attached to the network. CyberStation provides true integration of security (access control, intrusion monitoring and digital surveillance), power monitoring, life safety and climate control equipment within a single user interface.

Monitoring, Video Integration and Reporting

When it comes to monitoring and reporting, CyberStation really shines. Its graphics system is fully featured and provides dynamic updates of point values for any object on the system. Schedules, Trends, Reports and other tools can be launched from a graphic which provides quick, easy access to manage your whole system. Monitoring is further enhanced with the video integration features allowing the user to view live and recorded video from a "Video Layout" matrix. CyberStation's graphical reports can display raw log data in many output formats: html text reports, scalable vector graphic (SVG) bar, pie, and line charts, or as Adobe Acrobat PDF file. Furthermore, data can be represented statistically (e.g. the top 10 alarms, the highest temperature values). Reports can be run manually or executed on an alarm or schedule event and emailed to a predefined recipient list.

Alarms & Events

CyberStation serves as a powerful engine for collecting alarms and events and taking automatic actions (e.g. display the active alarm view, send as email, play an audio clip, launch a graphic, launch a live video layout). Users may be required to add a comment and sign off on alarm acknowledgments as an electronic signature of their action.

Andover Continuum Family of User Interfaces Features (continued)

Programming

CyberStation contains a rich editor for programming Andover Continuum Infinet or BACnet controllers with the Plain English (PE) programming language. This flexible environment allows for the most complex and customer specific sequences to be programmed. PE code can even be written to issue BACnet read/write commands to third party BACnet Devices, thereby taken control of the foreign controller.

Simplified Personnel Data Entry and Badge Creation

Personnel are easily managed from CyberStation with custom forms where card records can be entered with only basic training. Since the forms are customizable, you can be certain that these records are managed in a manner consistent with your organization. Assignment of access rights is as simple as assigning a record to a "Profile" that contains the valid areas and schedules for that group. To simplify data entry CyberStation can import data using LDAP or CSV files. When you are ready to create a physical badge, CyberStation is equipped with a full function badge creation package that captures photos, signatures and fingerprints and prints to a wide range of badge printers.

Native BACnet B-OWS

CyberStation communicates with the BACnet devices using BACnet/IP in strict accordance with ANSI/ASHRAE standard 135-2004 and is designed to function as a BACnet Operator Workstation (B-OWS) and BACnet Broadcast Management Device (BBMD). The CyberStation can communicate to all Andover Continuum BACnet Devices as well as any third party BACnet Device on the BACnet network.

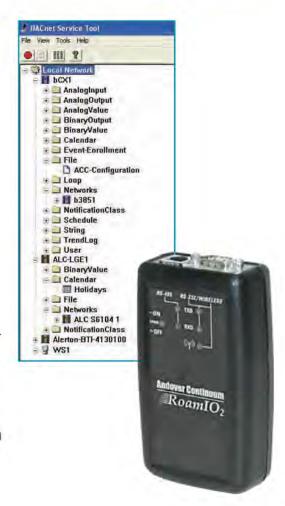
CyberStation takes advantage of the self-describing nature of the BACnet protocol. BACnet Devices and objects from any vendor are easily discovered and created in the Andover Continuum SQL database using the "Find BACnet Devices" and "Save to Database" functions. You'll save hours compared with traditional integration that requires known addresses and point-mapping.

Andover Continuum Family of User Interfaces Features (continued)

CyberStation is equipped to make use of the other powerful services provided within the BACnet protocol including scheduling, trending, and alarming. Andover Continuum and third party BACnet Devices may be backed-up and restored using the BACnet backup and restore services providing for quick disaster recovery.

web.Client Browser Interface

web.Client extends the Andover Continuum system to the web. Using the same database as CyberStation, web.Client gives the operator the freedom to access the Andover Continuum system from anywhere on the network or over Internet. Many of CyberStation's editors and features are available in web.Client as you would use them in CyberStation. web.Client even uses the same graphics as CyberStation so there is no need to create or convert a specific graphic for web use. Furthermore, ad hoc reports may be created while connected to Andover Continuum via web.Client.


Embedded Web Server

Every Andover Continuum controller that resides on an IP Ethernet network contains an embedded web server. The embedded web server provides a simple interface for custom web pages that contain Andover Continuum data. A custom web page can permit a user to edit point values and display log data, as well as displaying present values of object properties. The embedded web server also comes with default web pages for controller configuration.

RoamIO, Service Tool

The RoamIO₂ service tool is the ideal interface for project commissioning and day-to-day maintenance. RoamIO₂ may be used with either a Pocket PC or a laptop and can connect to an Andover Continuum system's Infinet or BACnet/IP or MS/TP network. Furthermore, the RoamIO₂ unit can connect wirelessly to the Pocket PC or laptop using a Bluetooth interface. This tool allows the technician to view an Andover Continuum or BACnet point (and its properties) along will many editing capabilities. A user can disable a fan for maintenance or download a new application to a controller. Since the RoamIO₂ supports BACnet backup and restore, even a third party controller that supports backup and restore

Andover Continuum Family of User Interfaces **Specifications**

Specifications	CyberStation	web.Client	Embedded Web Server	RoamIO ₂
Native BACnet	Yes	Yes	Yes	Yes
BACnet/IP	Yes	Yes	Yes	Yes
BBMD	Yes	-	bCX1 only	-
Schedules	Yes - Full	Yes-Full		View
Trends	Yes - Full	Yes-Full	3-0	View
Alarms	Yes - Full	Yes-Full	-	
Backup & Restore	Yes	.4,0	-	Yes
Graphics	Yes - Full	Yes-Full	Yes-HTML	-
Configuration	Yes - Full	Yes - Some	Yes-Some	Yes-Some
Programming	Yes - Full	+,		-
Reporting	Yes - Full	Yes-Full	Yes-HTML	-
User Security	Yes	Yes	Yes	Yes
Personnel Manager	Yes	Yes	-	-
Badging	Yes	-		-
LDAP	Yes	1.	i - i	-
Encryption	IPSec/PKE	SSL	-	_

All brand names, trademarks and registered trademarks are the property of their respective owners. Information contained within this document is subject to change without notice.

On October 1st, 2009, TAC became the Buildings Business of its parent company Schneider Electric. This document reflects the visual identity of Schneider Electric, however there remains references to TAC as a corporate brand in the body copy. As each document is updated, the body copy will be changed to reflect appropriate corporate brand changes.

Andover Continuum™ Infinet II

i2850 Series

The i2850, i2851, and i2853 controllers provide cost-effective DDC control of individual terminal units (e.g. VAV boxes, fan-powered induction units, unit ventilators, heat pumps).

Andover Continuum Infinet II i2850 Series Terminal Controllers Features

PRODUCT AT A GLANCE

- Compact Terminal Controllers Provide VAV Control for a Broad Range of Applications
- Compatible with Both Andover Continuum and Infinity Systems
- Expandable I/O Meets Additional Point Count Needs
- Universal Inputs with Form A and Form K
 Outputs for Flexible Control Options
- Non-Volatile Flash Memory Provides Utmost Reliability – Stores Both Application Program and Operating System
- Flash Memory Allows Easy On-Line Software Updates
- On-Board Airflow Sensor
- Optional Display/Keypad Provides Easy
 Operator Interface (Mounted Separately)
- View and Modify Information with Optional Andover Continuum Smart Sensor Display
- Local On-Board Service Port

The i2850 Series is a perfect fit for your VAV applications where external damper actuators are used. And because all i2850 Series controllers feature a built-in expansion port for additional I/O, these controllers are perfect for your more demanding control applications.

Choose the i2850 Series controller with the input configuration that matches your application:

- The i2850 has four full range universal inputs plus a fifth input for an on-board air flow sensor for VAV airflow measurement.
- The i2851 contains four universal inputs as well, but does not have the on-board air flow sensor and is perfect for applications not requiring airflow measurement, such as heat pumps and fan coils
- The i2853 is for dual-duct VAV applications. It contains two onboard airflow sensors and four universal inputs.

All three models feature an additional room sensor input, which supports Andover Continuum Smart Sensor, or any standard room temperature sensor; plus three Form A relays and one Form K Tri-state relay output.

Similar to all i2 controllers, the i2850 Series features Flash memory, increased user memory, and a fast (32-bit) processor for faster scan times, with plenty of additional memory available for data logging of your critical data.

The i2850 Series communicates with the entire Andover Continuum Infinet RS-485 field bus (i.e. both Andover Continuum Infinet and Andover Continuum Infinet II controllers) and is compatible with both the Andover Continuum CyberStation and Infinity SX 8000 front-ends. Up to 254 Andover Continuum Infinet devices can be networked to any Andover Continuum network controller.

Andover Continuum Infinet II i2850 Series Terminal Controllers Features (continued)

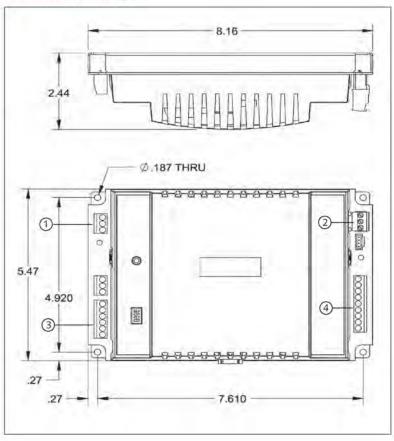
Increased Reliability with Flash Memory

The i2850's non-volatile Flash memory stores your operating system and application programs, so that in the event of a power loss, your application will be restored when power is returned. In addition, the Flash memory allows for easy upgrades of your operating system via software downloads, eliminating the need to swap out proms. The i2850 controllers include an on-board battery to safeguard your runtime data — protecting all point data and log data from being lost if power is removed.

Inputs

The input configuration on the i2850 Series consists of four full range universal inputs that accept voltage (0-5VDC), digital (on/off), counter signals (up to 4Hz), or temperature signals. The i2850 features one on-board air flow sensor; the i2853 provides two. All models offer an additional input to support the Andover Continuum Smart Sensor, or any standard room temperature sensor.

Outputs


The i2850 Series contains three Form A relay outputs and one Form K Tri-state output. Each relay is rated for 24 VAC/VDC, 3 amp. These outputs can be used separately for on/off or pulsed control of lighting, heat, and fan units. The preconfigured Form K Tri-state output can be used for bi-directional control of dampers and valves.

(Note: Any two consecutive Form A outputs can be configured to form an additional Form K output.)

I/O Expansion

The i2850 Series contains an I/O expansion port for the addition of up to two xP expansion modules directly on the bottom of the controller. The i2 family of modules includes the xPDI8, xPUI4, xPDO2, xPDO4, xPAO2, and xPAO4. In addition, the I/O bus supports the xP Display Module, which allows the user to view and change point values.

Dimensional Drawings

Andover Continuum Infinet II i2850 Series Terminal Controllers Features (continued)

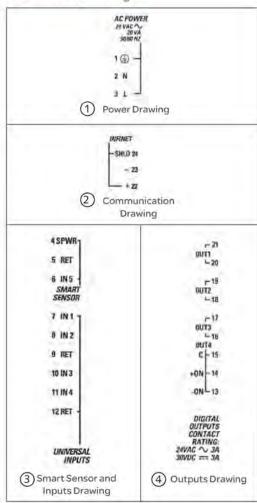
Software Capabilities

The dynamic memory of the i2850 Series can be allocated for any combination of programs, scheduling, alarming, and data logging using the powerful Andover Continuum Plain English™ programming language. Our object-oriented Plain English language with intuitive keywords provides an easy method to tailor the controller to meet your exact requirements. Programs are entered into the i2850 Series using the Andover Continuum CyberStation, Infinity SX 8000 Workstation, or local user terminal. Programs are then stored in, and executed by, the i2850 Series controllers.

Programming multiple i2850 Series controllers is inherently easy with Plain English. A complete copy of one i2850 controller's programs can be loaded directly into other i2850 controllers without changing any point names or programs.

Smart Sensor Interface

The I2850 Series provides a built-in connection for Andover Continuum Smart Sensor. The Smart Sensor provides a 2-character LED display and a 6-button programmable keypad that enables operators and occupants to change setpoints, balance VAV boxes, monitor occupancy status, and turn equipment on and off. An enhanced version of the Smart Sensor is also available with a 4-digit custom LCD that provides the following icons: PM, %, °, Setpoint, Cool, Heat, CFM, Fan, OA, and SP.


Local Display

The local display with keypad (xP-Display) allows for the addition of a fully programmable local display module that can be mounted within 10 feet (3 meters) of the controller. Connected via a ribbon cable, the xP-Display easily allows the Operator Interface to be mounted on the door of an enclosure or on a wall below or next to the controller.

Optional Wireless Andover Continuum Infinet

The i2850 Series Andover Continuum Infinet controllers can also communicate using a wireless mesh network. Simply plug Andover Continuum Wireless Adapters into the service ports of these controllers with wireless compatible firmware to create a wireless mesh network that sends and receives Andover Continuum Infinet messages.

Dimensional Drawings

Andover Continuum Infinet II i2850 Series Terminal Controllers Specifications

i2850 Series Terminal Controllers

Electrical

Power

24 VAC, +10% -15%, 50/60 Hz

Power Consumption

20 VA

Overload Protection

Fused with 2 amp fuse. MOV protected.

Software Real-Time Clock

Synchronized through Andover Continuum Infinet by network controller

Mechanical

Operating Environment

32°-120°F (0-49°C),

10-95% RH (non-condensing)

Size

5.47" H x 8.16" W x 2.44" D (139H x 207W x 62) mm

Weight

1.08 lbs. (.50 kg)

Enclosure Type

UL Open class, IP 10.

Flammability rating of UL94-5V

Mounting

Panel mount

Battery

Battery Backup

Replaceable, non-rechargeable, lithium battery. Provides 5 years typical accumulated power failure backup of RAM memory

Communications

Communications Interface

Through Andover Continuum Infinet RS-485 field bus to network controller

Communications Speed

1200 to 19.2K baud

Bus Length

4,000 ft. (1,220m) standard for Andover Continuum Infinet, i2 Infilink module allows extension to longer distances and is required after every group of 32 units on the network.

Bus Media

Andover Continuum Infinet: twisted, shielded pair, low capacitance cable

RS-485 port for implementing Wireless

Infinet II connection, including:

Standard service port, four-position shrouded connector

Comm. Error Checking

International Standard CRC 16

Compatibility

Andover Continuum Cyberstation and Infinity SX 8000 systems

Inputs

4 Universal inputs: Voltage (0-5.115 VDC);

Temperature -30°F to 230°F

(-34°C to 110°C), Digital (on/off), Counter (up to 4Hz at 50% duty cycle, 125 ms min. pulse width). Supervised Alarm (single or double resistor). Current input (0 - 20 mA)

using external 250 ohm resistor

1 Smart Sensor Temperature Input

(32°F to 105°F) (0°C to 41°C)

Airflow sensor (0 to 2" W.C.)

(i2850- qty 1; i2853-qty 2)

Input Voltage Range

0-5.115 volts DC

Input Impedance

10K ohm to 5.120V or 5M ohm with pull-up resistor disabled

Input Protection

24 VAC or 24 VDC temporarily

on any single channel, ±1000V transients (Tested according to EN61000-4-4)

Input Resolution

5.0 mV

Input Accuracy

 ± 15 mV (± 0.56 °C from -23°C to +66°C or ± 1 °F from -10°F to +150°F)

Airflow Input

Range: 0 to 2" W.C. (0-500 Pa)
Resolution: 0.005" W.C. (1.25 Pa) @

23° C (73° F)

Accuracy: ±0.05" W.C. (6.25 Pa)

@23°C (73°F)

110

Andover Continuum Infinet II i2850 Series Terminal Controllers Specifications (continued)

i2850 Series Terminal Controllers

Outputs

3 single pole single throw (SPST)

Form A relays

1 Form K Tri-state relay output

(Any two consecutive Form A outputs

can be configured as one Form K Tri-state)

Output Rating

Maximum 3A, 24VAC/VDC,

±1500V transients

(Tested according to EN61000-4-4)

Output Accuracy

0.1 sec. for pulse width modulation

Expansion Bus

Interfaces to optional xP I/O

Expansion Modules

Connections

Power

3-position fixed screw terminal connector

Inputs

6-position fixed screw terminal connector

Outputs

9-position fixed screw terminal connector

Smart Sensor

3-position fixed screw terminal connector

Communications

3-position removable screw

terminal connector

Expansion Port

6-position shrouded connector

Service Port

4-position shrouded connector

User LEDs/Switches

Status Indicator LEDs:

CPU CPU Active
TD Transmit Data
RD Receive Data
Output Output Status (per

output) (Digital only)

EXPANSION

PORT PWR Power Status

Switches

RESET

Input Pull-up Resistor Switch (per input)

General

Memory

128K SRAM, 1MB FLASH

Processor

Motorola 32-bit Coldfire

Agency Listings

UL/CUL 916, FCC CFR 47 Part 15, ICES-003, EN55022, AS/NZS 3548,

Class A, CE

Options

UL864, Smoke Control System Equipment,

UUKL (i2850-S, i2851-S, i2853-S)

Models

i2850

Infinet II i2850 Terminal Controller

i2850-S

Infinet II i2850 Terminal Controller

with Smoke-Control option

i2850-WL

Wireless Infinet II i2850 Terminal Controller

i2851

Infinet II i2851 Terminal Controller

i2851-S

Infinet II i2851 Terminal Controller

with Smoke-Control option

i2851-WL

Wireless Infinet II i2851 Terminal Controller

i2853

Infinet II i2853 Terminal Controller

i2853-S

Infinet II i2853 Terminal Controller

with Smoke-Control option

i2853-WL

Wireless Infinet II i2853 Terminal Controller

All brand names, trademarks and registered trademarks are the property of their respective owners. Information contained within this document is subject to change without notice.

On October 1st, 2009, TAC became the Buildings Business of its parent company Schneider Electric. This document reflects the visual identity of Schneider Electric, however there remains references to TAC as a corporate brand in the body copy. As each document is updated, the body copy will be changed to reflect appropriate corporate brand changes.

Schneider Electric One High Street, North Andover, MA 01845 USA Telephone: +1 978 975 9600 Fax: +1 978 975 9674 www.schneider-electric.com/buildings

Manufacturer Specification Sheets

ECM 4: Web-enabled Programmable Thermostats

Investment Grade Audit

This page is intentionally left blank.

@ ecobee EMS Si

Compatibility

- Conventional (2H/2C)
- Heat pump (3H/2C) incl. 1-stage auxiliary heat
- · Gas. oil, electric
- · Dual fuel

Wire terminals

- R2 R2+
 Y2
 G
 R1 W2 AUX
 Rc
 G
 W O/B
- R1+ RH Y

Powering method

24VAC (3VA minimum)

Power consumption

Less than 3.5VA

Connectivity & security

ecobee uses the latest encryption technologies to ensure that data is protected both in transmission and network access. The ecobee EMS Si is designed to support:

- · 802.11 b/g/n wireless routers
- WEP 64, WEP 128, WPA and WPA2 encryption methods
- DHCP (dynamic) or Static IP addressing
- · 168 bit SSL encryption

Bandwidth

15-20 MB/month

Green

- · Recyclable packaging
- · Mercury free
- · Arsenic free
- · PVC free
- · ROHS compliant

Temperature range

Set point: 45° to 92°F (7° to 33°C)
Display: 40° to 100°F (5° to 37°C)
Sensitivity: +/- 1°F (+/- 0.5°C)
Operating: 32° to 130°F (0° to 55°C)

Humidity range

Display: 20% to 90% RH Sensitivity: +/- 5% RH

Operating: 5% to 95% RH (non-condensing)

Automation

Two dry contact inputs and/or 10K resistive temp sensors that can be programmed to:

- Adjust the heat and or cool set temperatures
- Switch the system to occupied or unoccupied mode
- · Shut down the compressor
- · Shut down AC
- Turn fan on
- · Disable auxiliary heat
- · Disable all heat

Mechanical specifications

- · Easy to access battery compartment
- · Decorative trim plate included
- · 94V0 (flame resistant) plastic

What's in the box

- · ecobee EMS Si Thermostat
- · Installation Manual

Additional features

- · Fahrenheit or Celsius display
- · 365 day scheduling
- Automatic daylight saving time adjustment
- Adjustable Auto change-over dead-band
- Installer programmable options including:
 - Heat and cool
 differential temperature
 - Minimum compressor off time
 - Heat and cool fan dissipation time
 - · Display temperature offset
- Outdoor temperature detection (requires internet connection)
- Reminders & alerts on screen or via email

Product Dimensions

Height: 3.25 in / 82.5 mm Width: 5.5 in / 139.5 mm Depth: 1 in / 25 mm

Warranty

3-year warranty

Languages

English

Display

2.5" full-color LCD non-touch screen 320 x 240 pixel display

Manufacturer Specification Sheets

ECM 5: Heat Timer & Thermostatic Radiator Valves

Investment Grade Audit

This page is intentionally left blank.

US Average Annual Heating Costs 2005 2002 = Natural Gas = Heating Oil \$1900 -\$1300 \$1000

With Today's Rising Fuel Prices & Environmental Concerns, it is More Important Than Ever to Conserve Energy!

- ✓ Lower Heating Costs
- Reduced Expansion Noises
- More Comfort with Fewer Temperature Swings
- Less CO₂ Emissions for a Greener Environment
 - Manufactured in North America
- Full Warranty Backed by Professionals

Outdoor Reset, download the Essay E007 from the literature section of For more information about tekmarcontrols.com

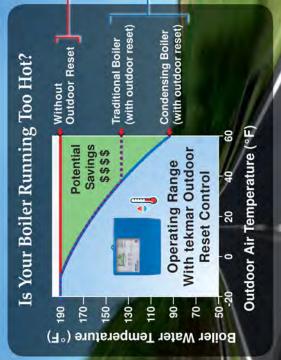
Save on Home

Heating Bills

= tekmar Representative = tekmar Headquarters Contact your local tekmar representative or heating contractor and ask for tekmar by name. tekmar Control Systems Head Office: 5100 Silver Star Road, Vernon, B.C. Canada V1B 3K4, 250-545-7749, Fax. 250-545-0650 Web Site: www.tekmarcontrols.com Product design, software & literature are Copyright ©2008 by: tekmar Control Systems Ltd. & tekmar Control Systems, Inc. P022 - 09/08

In Your Wallet

Keep More \$\$


ckma

Save 5 to 30% With Your Existing Heating System! Outdoor Reset Controls Offer an Easy Way to

Like Driving Your Car Too Fast! Running Your Boiler Too Hot is

Even though your car is designed to operate at a high speed, most of the time you drive slower, adjusting your speed to match the current conditions. This improves fuel economy, comfort & safety.

American locations have less than 10 days in a In the same way, your boiler is designed to operate at a high temperature to match your home's heat year that actually require this high temperature. A the boiler temperature to match current outdoor loss on the coldest day of the year. Most North tekmar outdoor reset control continuously adjusts conditions. Lowering the boiler temperature for most of the year substantially reduces fuel consumption while improving comfort & safety.

Savings from 5 to 30%

- = 5% savings
- = 30% savings

reset & cut-out control to your achieved by adding outdoor Up to 30% savings can be existing heating system.

Annual Heating Bill Based on \$1000

mncee.org

set temperature without regard to outdoor conditions Without Outdoor Reset boilers operate at or how much heat is actually required.

With Outdoor Reset the boiler temperature is lowered as the outdoor temperature rises. This matches boiler operation to how much heat your home needs, reducing fuel consumption while improving comfort.

How a tekmar Outdoor Reset Control Works

drops, the thermostat requests When the room temperature heat from the tekmar control. The control monitors the current outdoor temperature with an external sensor.

The control intelligently calculates providing heat without waste. the required temperature,

Your heating bills are

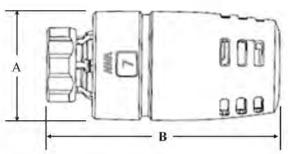
tekmar Reset Control Facts:

- Outdoor reset control has been mandated for both new & existing boilers in European countries since the 1990's.
- The 1998 LEED® for Homes Rating Systems offers credit for systems with outdoor reset control.
- Outdoor reset works for both traditional & condensing boilers so you can keep your old boiler and still save.
- automatically turns the system off during warm weather. To save even more, Warm Weather Shut Down (cut-out)
- Baseboard heaters, radiators, and in-floor heating systems all benefit from outdoor reset control.
- tekmar has provided energy saving controls to North American residential and commercial buildings for over 20 years.

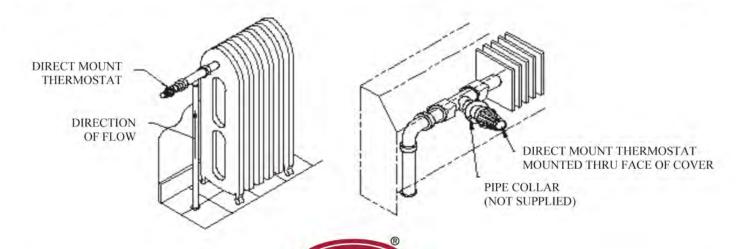
THERMOSTATIC OPERATOR **DIRECT MOUNT**

EVO-28

Description


EVO is a self-acting, adjustable, non-electric thermostatic operator. It has adjustable max./min. temperature, selected temperature locking feature and can be shutoff completely if required. The symbol * protects against frost damage. Each EVO thermostatic operator is individually calibrated and conforms to ASHRAE standardization rules for temperature regulation. The EVO's smooth

operation and makes it easy to keep clean. They can be mounted on all Macon NT series valves.


shape and narrow air gaps gives a nice

TECHNICAL DATA			
Temperature Setting Range	50°F to 82°F	Matarial	Engineered heat resistant
Maximum Storage & Ambient Temp.	122°F	Material	Engineered heat resistant thermoplastic (PBT,POM)
Maximum Water Temp.	250°F	Nut	Low Lead Brass
Maximum Steam Pressure	15 psig	Weight	4.16 oz.
Maximum Differential Pressure	20 psi	Color	White
Suggested Differential Pressure	0.5 to 2.9 psi	Width (A)	1.73"
Max. Movement	0.125"	Height (B)	3.66"
Nominal Opening	0.018 (3.6°F)		
Long Term Test	5000 Cycles (1.3°F)		

`unsta

THERMOSTATIC OPERATOR DIRECT MOUNT EVO-28

Maximum & Minimum Setting

Maximum setting

- 1. Turn the wheel to maximum.
- 2. Push the mark in with limit tool (located opposite the dial setting window) and press in the wheel handle 1-2 mm until it stops. (Figure 1)
- 3. Remove the limit tool and press in the wheel handle until it stops. (Figure 2)
- 4. Set the required temperature according to the chart below.
- 5. Pull the wheel handle out and the maximum temperature is set. (Figure 3)

Minimum setting

- 1. Turn the wheel to minimum
- Push the mark in with limit tool (located opposite the dial setting window) and press in the wheel handle 1-2 mm until it stops.
- 3. Remove the limit tool and press in the wheel handle until it stops.
- 4. Set the required temperature according to the chart below.
- 5. Pull the wheel handle out and the minimum temperature is set.

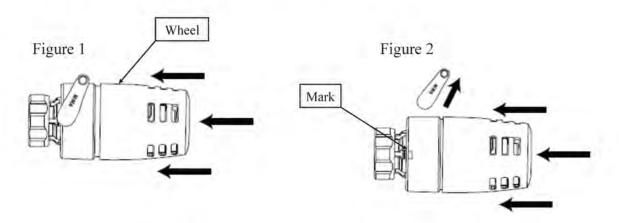
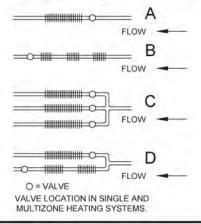


Figure 3

AL SE	TTINGS							
0	*	1	3	5	6	7	8	9
Off	50	54	61	68	72	75	79	82
	Frost Protection							



Operation

The Macon valve is designed to save energy by controlling hot water or low pressure steam heat in freestanding radiators, convectors, baseboards, fan coil units and the like in a loop, a zone or a unit. The valve, coupled with a Macon operator, provides a reliable automatic modulating unit. As room temperature drops, the Macon valve opens to allow more hot water or steam to flow through the radiator, thus allowing more heat into the room. When the room approaches the selected temperature, the operator causes the valve to begin closing off the flow of hot water or steam. This continued monitoring of the temperature is fully automatic, using no electricity whatsoever. The Macon valve can be equipped with any wide variety of Macon operators.

Features

- Compact dimensions
- Replaceable insert
- · Stainless steel spindle
- · Individual room control
- Easy one-trade installation
- Fuel savings up to 30%
- · Prevents over- and under-heating
- Helps balance the heating system
- Same valve used for hot water or low pressure steam
- All NPT are forged brass nickel-plated
- Minimizes or eliminates expansion noises
- Suitable for nearly any hydronic heating application
- Operators can be changed without draining the system
- Shipped with a protective cap that can be used to control heating during the installing period

Vertical angle valve with straight nipple. NPT - female inlet, male union outlet.

N10637 - 1/2"

N10657 - 3/4"

N10677 - 1"

N10697 - 1-1/4"

Straight valve with straight nipple. NPT - female inlet, male union outlet.

N10737 - 1/2"

N10757 - 3/4"

N10777 - 1"

N10797 - 1-1/4"

Horizontal angle valve with straight nipple. NPT - female inlet, male union outlet.

N10837 - 1/2"

N10857 - 3/4"

N10877 - 1"

N10897 - 1-1/4"

Sweat valve with female inlet and outlet.

N10930 - 1/2"

N10950 - 3/4"

N10970 - 1"

Fail closed valves also available, consult factory

All Macon valves and thermostats conform to ASHRAE Standard 102P-1983 and European Standard EN 215/1215. We are also ISO 9001 certified (1994) and ISO 14001 certified (1998).

DATA - Macon Valves for NT Series

Disc Material: EPDM

Body Styles: Straightway or angle Maximum steam pressure: 15 psig Maximum static pressure: 145 PSI Maximum water temperature: 250°F

Body tappings: Female inlet, male union outlet,

Female sweat

Body Material: Forged brass, NPT valves are

nickel-plated

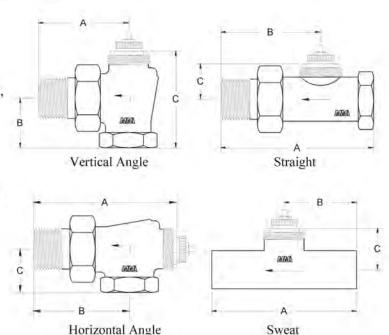
Max. Differential pressure: 20 psi H2O, refer

to thermostat specs

Suggested Differential Pressure = 0.5 to 2.9 psi Overall Height: Add thermostat dimensions

less 1/4"

Macon NT Series Valves are in an open position when no operator is attached.


IMENCIONE & INCEDTO

CV: 1/2" = 1.8

3/4" = 2.5

1" = 2.74

1-1/4 = 3.5

	V	ERTIC	CALA	NGLE	2
BODY #	SIZE	A	В	C	Insert
N10637	1/2"	2-1/4"	1"	1-3/4"	T23000
N10657	3/4"	2-1/2**	1-1/8	2-1/8"	T23000
N10677	1,.	3"	1-3/8"	2-1/4"	T25000 (LBLD)
N10697	1-1/4"	3-1/4"	1-3/4"	2-3/4"	T25000 (LBLD)
	НО	RIZO	NTAL	ANGI	LE
BODY#	SIZE	A	В	C	Insert
N10837	1/2"	3-3/8"	2-3/16"	1-1/2"	T23000
N10857	3/4"	3-3/4"	2-1/2**	1=1/4"	T23000
N10877	1"	4-3/16"	3"	1-3/8"	T23000
N10897	1-1/4"	4-3/4"	3-1/4"	1-7/8"	T25000 (LBLD)

		ST	RAIGI	IT	
BODY #	SIZE	A	В	C	Insert
N10737	1/2"	3-1/2"	2-1/16"	1"	T23000
N10757	3/4"	4"	2-1/2**	1"	Т23000
N10777	120	4-5/8"	2-15/16"	1"	T25000 (LBSD)
N10797	1-1/4"	5-1/4"	3-3/8"	1-1/8,5	T25000 (LBLD)
		SWEA	T VAI	LVES	
BODY #	SIZE	A	В	C	Insert
N10930	1/2"	2-3/16"	1-3/32"	1"	T23000
N10950	3/4"	2-11/16"	1-11/32"	7/8"	T23000
N10970	["	3-5/32"	1-9/16"	1"	T25000 (LBSD)

Manufacturer Specification Sheets

ECM 6: Fuel Oil to Natural Gas Conversion

Investment Grade Audit

This page is intentionally left blank.

JB(X) Series Burners

Efficient, Reliable, Safe Solutions For Cast Iron, Firetube, Firebox, Watertube And Process Applications

10 BHP to 300 BHP Range

Benefits Of The JB And JBX Series Burners

Webster JB(X) series burners offer years of dependable and efficient operation. Designed with ease of serviceability in mind, Webster burners are equipped with a wide variety of the latest control and technology options available. When combined with the patented Webster Temp A Trim control system, the JB(X) burner is by far the most efficient option in the industry.

Versatility and flexibility are prime considerations in the

Webster JB(X) series design. JB(X) series units can be adapted to fire in most any furnace configuration or combustion environment, and Webster has years of proven experience firing a multitude of fuels including: Natural, LP, and Digester gas, No.2 through No. 6 oil, and other more exotic fuels.

Webster JB(X) burners are completely factory wired, assembled, and tested so they come to you ready for installation and connection to fuel and electrical supplies. Typical JB(X) series burners are installed and ready for start-up in a minimal amount of time, saving valuable time and money at your installation.

When it comes to low emission requirements, Webster should be your choice. The JB(X) series burner offers optional low NOx configurations. Depending on the application, the JB(X) is available with and without Induced Flue Gas Recirculation for 30ppm requirements. Webster has been providing low emission units for more than 25 years and understands what it takes to meet your compliance requirements.

JB and JBX Features

Versatile

- Available in multiple housing and control panel configurations
- · Fires multiple fuels
- Designed for all types of boilers, heaters and furnaces
- Proven performance in all types of applications

Reliable

- Outstanding flame stability
- High combustion efficiency
- · Designed for ease of service
- Quiet operation
- UL & ULC Listed

Adaptable

- Standard or inverted housing
- Burner mounted or remote control panels
- Standard or low NOx designs available

Efficient

- Linkageless control options
- · Add Temp A Trim for most efficient operation and quick payback

Webster Combustion has the best lead times in the industry. To configure the perfect JB(X) burner for your application and obtain current scheduling information, contact Webster or visit www.webster-engineering.com to locate a sales office in your area.

JB(X) Series Maximum Input Capacity Ratings

Burner Model	Min Reg'd Gas Press	Std Gas Train Size	Max Firing Rate (MBH) Std	Max Firing Rate (MBH) w/FGR	Fan Motor HP
JB(X)1*-02	6"wc	1,11	1000	800	1/4
JB(X)1*-03	8"wc	1-1/4"	1500	1200	1/3
JB(X)1*-05	8"wc	1-1/2"	2100	1680	1/2
JB(X)1*-07	11"wc	1-1/2"	2500	2000	3/4
JB(X)2*-07	13"wc	1-1/2"	2800	2240	3/4
JB(X)2*-10	14"wc	2"	3500	2800	1
JB(X)2*-15	14"wc	2"	3500	2800	1-1/2
JB(X)2*-20	14"wc	2"	4200	3360	2
JB(X)2*-30	14"wc	2-1/2"	5300	4240	3
JB(X)2*-50	18"wc	2-1/2"	6000	4800	5
JB(X)3*-30	1 psig	2-1/2"	6300	5040	3
JB(X)3*-50	1 psig	3"	8300	6640	5
JB(X)3*-75	1 psig	3"	10,500	8400	7-1/2
JB(X)3*-100	1.5 psig	3"	12,600	10,080	10

^{*} Can be "G" (Gas), "O" (Oil) or "C" (Combination Gas/Oil)

JB(X) Series Typical Dimensions (Inches)

Model	A	B1	B2	C1	C2	D	E	F**	G**	H1***	H2***	L1*	L2	W***	X**
JB(X)1	4	18 ³ / ₈	18 ³ / ₈	81/4	143/8	71/4	117/16	1815/16	5	1511/16	11 ³ / ₈	265/8	3615/16	21 ⁷ /8	133/4
JB(X)2	4	191/16	181/2							19		the second second	391/4		
JB(X)3	4	1915/16	199/16	155/16	191/4	111/4	231/4	2615/16	85/16	221/2	143/4	381/4	48	363/4	291/2

- * Add 1/4" to Dimension L1 for heavy oil burners. Use Dimension L2 for alternate control cabinet location.
- ** On units with FGR for NOx reduction, FGR valve will emerge from side of burner opposite blower motor.
- *** Extra ground clearance & width may be required for the addition of FGR. Consult factory for details.

JB(X) STANDARD ARRANGEMENT (OPTIONAL) W C1 A G FGR Valve (optional)

The Better Boiler Burner.

Represented By

619 Industrial Road, Winfield, KS 67156 / Phone: 620-221-7464 / Fax: 620-221-9447 www.webster-engineering.com / sales@webster-engineering.com

KNIGHT FIRE TUBE BOILER

☐ Wireless Outdoor Sensor

■ M9 Standard Construction

LP Gas Conversion Kit

> Firing Codes

Submittal Sheet

KHBWHB-Sub-01

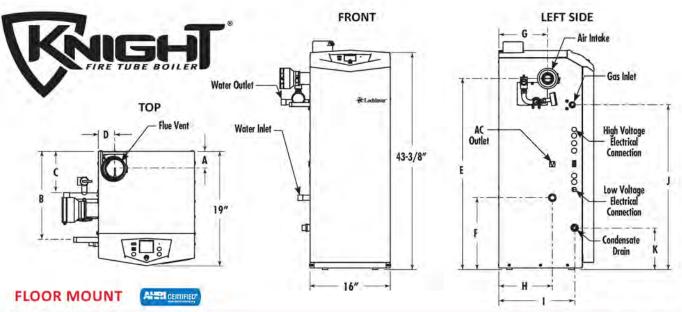
KNIGHT FIRE TUBE BOILERS - FLOOR AND WALL MOUNT MODELS

Job Name:	Location:	MODELS
Engineer:	Agent/Wholesaler:	
Contractor:	Type Gas:	
Model #:	Equipment Tag(s):	
JOB NOTES:	> Four Pump Control System Pump with Parameter for Continuous Operation Boiler Pump with Variable Speed Control Domestic Hot Water Pump Domestic Hot Water Recirculation > Domestic Hot Water Prioritization DHW tank piped with priority in the boiler loop DHW tank piped as a zone in the system with the pumps controlled by the SMART SYSTEM DHW Modulation Limiting	
Smart System Features	Separately Adjustable Space Heat/DHW Switching Times	0-10 VDC BMS External Control Contact
 > Smart System Digital Operating Control Multi-Color Graphic LCD Display w/Navigation Dial, Soft Keys and Loch-N-Link USB programming > Three Boiler Setpoint Temperature Inputs Plus Domestic Hot Water Prioritization > Built-in Cascading Sequencer for up to 	 Building Management System Integration 0-10 VDC Input to Control Modulation or Setpoint 0-10 VDC Modulation Rate Output 0-10 VDC Input to Enable/Disable Call for Heat Access to BMS Settings through Graphic LCD Display High-Voltage Terminal Strip 	 0-10 VDC Boiler Rate Output Contacts 0-10 VDC Variable Speed System Pump Signal Inpo 0-10 VDC Signal to Control Variable Speed Boiler Pum Modbus Contacts > Time Clock > Data Logging Hours Running, Space Heating
8 Boilers, with Cascade Redundancy Multiple Size Boiler Cascade Lead Lag Efficiency Optimization Front End Loading Capability Outdoor Reset Control with Outdoor Air Sensor Programmable for Three Reset Temperature Inputs Programmable System Efficiency Optimizers	120 VAC / 60 Hertz / 1 Phase Power Supply Three Sets of Pump Contacts Low-Voltage Terminal Strip DHW Recirculation Pump Start/Stop 24 VAC Device Relay Configurable Proving Contacts Flow Switch Contacts Alarm on Any Failure Contacts	Hours Running, Domestic Hot Water Ignition Attempts Last 10 Lockouts Maintenance Reminder Custom Maintenance Reminder with Contractor Contact Information Installer Ability to De-activate Service Reminde Low-Water Flow Safety Control & Indication
SH Night Setback DHW Night Setback Anti-Cycling Outdoor Air Reset Curve Ramp Delay	Runtime Contacts DHW Thermostat Contacts 3 Space Heat Thermostat Contacts System Sensor Contacts DHW Tank Sensor Contacts	> Password Security > Customizable Freeze Protection Parameters Optional Equipment CON-X-US Remote Connectivity
Modulation Factor Control Boost Temperature & Time Standard Features	Outdoor Air Sensor Contacts Cascade Contacts	Modbus Communication BACnet MSTP Flow Switch
> 95% DOE AFUE Efficiency (55-285)	> SMART SYSTEM™ Control	Low-Water Cutoff w/Manual Reset & Test
Modulating Burner with up to 10:1 Turndown** Direct Spark Ignition Low NOx Operation	 Condensate Trap ECM Variable Speed Boiler Circulating Pump 	☐ Alarm Bell ☐ Concentric Vent Kit ☐ Condensate Neutralization Kit
ASME Stainless Steel Heat Exchanger 30 PSI ASME Relief Valve	> 110V Convenience Outlet > High Altitude Models Available	BMS Gateway to LON or BACnet IP Multi-Temperature Loop Control
> Top and bottom water connections (MNPT, WHB 55-285 Only)	Other Features Automatic Reset High Limit	Sidewall Vent Termination

Adjustable High Limit w/Manual Reset

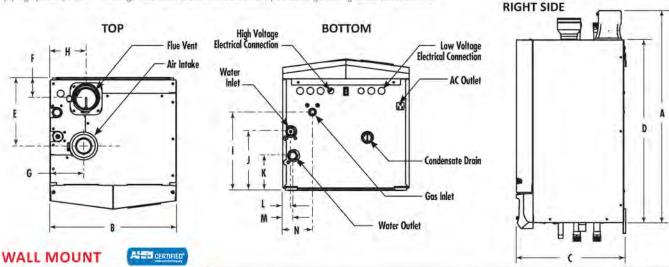
5-Year Limited Parts Warranty

Zero Clearances to Combustible Materials


15-Year Limited Warranty (See Warranty for Details)

> Universal Vent Adapter

> Vertical & Horizontal Direct Vent


Built-in Combustion Analyzer Port

PVC, CPVC, Polypropylene or SS Venting up to 100 ft.

		Input	MBH		iinalia.	Net												-	7			et in
	Model Number	Min	Max	AFUE%	Heating Capacity MBH	AHRI Rating MBH	A	В	c	D	E	F	G	H	1	j	K	Gas Conn.	Water Conn.	Air Inlet	Vent Size	Shipping Weight (lbs.)
0	KHB055N	8.3	55	95	51	44	3-1/2"	13-1/4"	6"	2-3/4"	37-2/3"	13-1/2"	8-1/3"	10-1/2"	15"	32-1/2"	8-1/3"	1/2"	17	2"	2*	160
0	KHB085N	8.5	85	95	79	69	3-1/2	13-1/4"	6"	2-3/4"	37-2/3"	13-1/2"	8-1/3"	10-1/2"	15"	32-1/2"	8-1/3"	1/2"	1"	2"	2"	165
0	KHB110N	-11	110	95	102	89	2-3/4	14-3/4"	7-1/2"	2-3/4"	38"	14-1/3"	9-3/4"	10-1/2"	15"	33"	8-1/3"	1/2"	1	3*	3	170
0	KHB155N	15.5	155	95	144	125	2-3/4"	14-3/4"	7-1/2"	2-1/2"	38"	14-1/3"	9-3/4"	10-1/2"	15"	33"	8-1/3"	1/2"	T.	3"	3*	175
0	KHB199N	19.9	199.9	95	185	161	3"	15-1/2"	7-1/2"	2-1/2"	38-1/3"	14-1/3"	10-1/2"	11-1/2"	15"	33"	8-1/3"	1/2"	1-1/4	3"	3"	195
0	KHB285N	28.5	285	95	264	229	3"	15-1/2	7-1/2"	2-1/2"	38-1/3"	14-1/3"	10-1/2"	11-1/2"	15"	33"	8-1/3"	1/2"	1-1/4	3"	3-	205

. Information subject to change without notice. Change "N" to "L" for LP gas models. . The Net AHRI Water Ratings shown are based on a piping and pickup allowance of 2.15, Lochinvar should be consulted before selecting a boiler for installations having unusual piping and pickup requirements, such as intermittent system operation, extensive piping systems, etc.
 The ratings have been determined under the provisions governing forced draft burners.

	Model Number	Inp Max. MBH	ut Min. MBH	AFUE %	Heating Capacity MBH	Net AHRI Rating MBH	A	В	c	D	E	Ė	G	H	į	i	K	i,	M	N	Gas Conn.	Water Conn.	Air Inlet	Vent Size	Shipping Wt. (lbs.)
0	WHB055N		8.3	95	51	44	-40°	18-3/4"	167	31-1/8"	8-1/2"	3-3/4"	4-1/2"	6-1/2"	7-1/4"	8-7/8"	3-1/2"	1-1/2"	1-1/2"	6"	1/2"	1"	2"		139
	WHB085N	85	8.5	95	79	69	39-3/4"	18-3/4"	16"	31-1/8"	8-1/2"	3-3/4"	4-1/2"	6-1/2"	7-1/4"	8-7/8"	3-1/2"	1-1/2"	1-1/2"	6"	1/2"	1"	2"	2"	142
~	WHB110N	110	11	95	102	89	41-1/4"	18-3/4"	19"	31-1/8"	10"	2-3/4"	5"	5-1/4"	11-1/2"	8-1/2"	5"	1"	1"	4-1/2"	1/2"	1"	3"	3"	159
	WHB155N	155	15.5	95	144	125	41-1/4"	18-3/4"	19-1/8"	31-1/8"	10"	2-3/4"	5"	5-1/4"	11-1/2"	8-1/2"	5"	1"	1"	4-1/2"	1/2"	1"	3"	3"	166
	WHB199N	199.9	19.9	95	185	161	41-1/4"	18-3/4"	19-1/8"	31-1/8"	10-1/2"	3"	5-1/4"	6"	11"	9-1/2"	6-1/4"	1-1/2"	1-1/2"	4-1/2"	1/2"	1-1/4"	3"	3"	175
O	WHB285N	285	28.5	95	264	229	41-3/4"	18-3/4"	21-1/8"	31-1/8"	15"	3"	3-3/4"	5-1/4"	12-1/4"	11"	6-1/4"	1-1/2"	1-1/2"	6-1/2"	1/2"	1-1/4"	3"	3"	184
0	WHB399N	399	80	94.4*	3771	328	43-1/4"	25-1/4"	21-7/8"	34"	3-1/2"	4-1/4"	22-1/2"	3-7/8"	8-7/8"	12-1/2"	9-1/4"	2"	2"	21-1/2"	3/4"	1-1/2"	4"	4"	213

- * Thermal Efficiency%
- # Gross Output MBH
- **10:1 Turndown ratio and top and bottom water connections are not included on WHB399. WHB399 operates with a 5:1 turndown.
- . Information subject to change without notice. Change "N" to "L" for LP gas models. . The Net AHRI Water Ratings shown are based on a piping and pickup allowance of 1.15, . Lochinvar should be consulted before selecting a boiler for installations having unusual piping and pickup requirements, such as intermittent system operation, extensive niping systems, etc. . The ratings have been determined under the provisions governing forced draft burners.

Lochinvar, LLC 300 Maddox Simpson Parkway Lebanon, Tennessee 37090 P: 615.889.8900 / F: 615.547.1000 1 D In D Lochinvar.com

Water Heater

CYCLONE® HE POWER VENT

The Cyclone® HE is a light-duty, power vent, fully condensing commercial gas water heater with an internal helical heat exchanger, similar to the design of A. O. Smith's industry-leading Cyclone® models. This helical heat exchanger helps Cyclone® HE achieve 94% thermal efficiency and deliver outstanding hot water output.

INTELLI-VENT™* GAS CONTROL WITH SILICON NITRIDE HOT SURFACE IGNITOR

- · Premium-grade hot surface ignitor eliminates standing pilot.
- · Electronic circuitry provides superior system diagnostics capabilities plus extremely precise temperature control.
- · Temperature control up to 181°F.

POWER VENT DESIGN FOR INSTALLATION VERSATILITY

- · Modular blower, with 6-foot cord and standard 3-prong connector.
- Combined vertical and horizontal runs terminating through an outside wall, using Schedule 40 PVC, CPVC or polypropylene pipe: Canadian installations require ULC \$636 approved pipe for venting.
 - 2" pipe allows vent runs up to 25 equivalent feet
 - · 3" pipe allows vent runs up to 65 equivalent feet
 - · 4" pipe allows vent runs up to 128 equivalent feet

HIGH OUTPUT WITH SMALL **FOOTPRINT**

- · 22" diameter, combined with 94% efficiency, 50-gallon tank and 76,000 BTU input means Cyclone® HE can be installed in less space than a larger 75-gallon unit, with equal or better performance.
- Total height is 71 1/8" to top of blower

GREEN CHOICE® GAS BURNER

· Patented eco-friendly burner design reduces NOx emissions by up to 33% and complies with Low-NOx emission requirements of less than 40 ng/J.

SIDE-MOUNTED TAPS FOR RECIRCULATING SYSTEMS

 Hot and cold side taps allow Cyclone[®] Power Vent to be used for combination systems for water heating plus space heating, radiant floor heating or other applications requiring a recirculating hot water loop.

BLUE DIAMOND® GLASS COATING WITH TWO HEAVY DUTY ANODE RODS

 Provides superior corrosion resistance compared to industry standard glass lining.

DYNACLEAN™ DIFFUSER DIP TUBE

MAXIMUM HYDROSTATIC WORKING PRESSURE: 150 PSI

STANDARDS AND CERTIFICATIONS

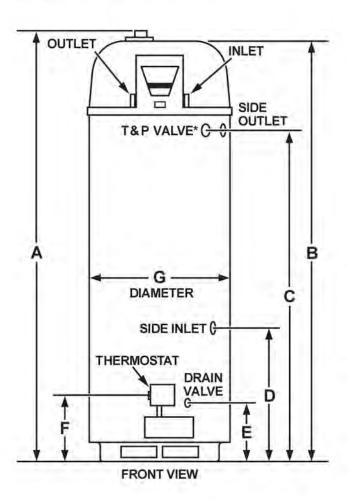
- · Meets UBC, CEC and ICC National Codes.
- Meets the thermal efficiency and standby loss requirements of the U.S. Department of Energy and current edition of ASHRAE/ IES 90.1.
- Design certified by Underwriters Laboratories Inc. under American National Standard/CSA Standard for Gas Water Heaters ANSI Z21.10.3 - CSA 4.3 (current edition).
- · CSA certified and ASME rated T&P relief
- Not recommended for sanitation rinse.

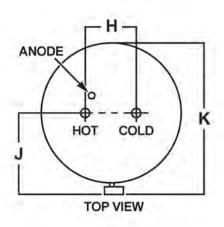
3-YEAR LIMITED TANK AND 1-YEAR LIMITED PARTS WARRANTY

· For complete warranty information, consult written warranty or go to hotwater.com.

*Intelli-Vent™ is a trademark of Emerson Electric Company

SERIES 120





*INSTALL IN ACCORDANCE WITH LOCAL CODES

Model Number	Gallon/ Litre Capacity	Recovery @ 90°F Rise Gallon Per Hour	BTU Input Per Hour	Dimensions	A	В	С	D	E	F	G	н	j	к	Approx. Shipping Weight (lbs/kg)
DTV OO	FOULD	inc	76,000	Inches	71-1/8	68 3/4	51 7/8	20 7/8	9-1/8	12	22	8	15-3/4	27	225/102
BTX-80	50/189	95	76,000	cm	181	175	132	53	23	30	56	20	40	68	225/102

Available in natural gas only.

Top inlet and outlet connections: 1/4" male NPT.

Circulation loop connections: 3/4" female NPT.

Standard model certified for sea level to 5,300 ft. elevation. Order SMR K30 for elevations to 10,100 ft.

Optional Condensate Neutralizer Kit available (Part Number 100112380).

Electrical characteristics: 120 volt, 60 Hz <5 amps

						Reco	very Capa	cities						
Model Number	Temperature	°F	30	40	50	60	70	80	90	100	110	120	130	140
Number	Rise	°C	17	22	28	33	39	44	50	56	61	67	72	78
DTV 00	GPH		286	215	172	143	123	107	95	86	78	72	66	61
BTX-80	LPH		1084	813	651	542	465	407	361	325	296	271	250	232

For Technical Information, call 800-527-1953. A. O. Smith Corporation reserves the right to make product changes or improvements without prior notice.

Manufacturer Specification Sheets

ECM 8: Variable Frequency Drives for HW Pumps

Investment Grade Audit

This page is intentionally left blank.

Altivar 212 & S-Flex enclosed variable speed drives

for 3-Phase asynchronous motors from 1 to 100 hp, 0.75 to 75 kW

eCatalog

Introduction

Product Webpage

Introduction

The Altivar™ 212 drive is a frequency inverter for 1-100 HP, 0.75-75 kW three-phase asynchronous motors.

It has been designed for the most common HVAC (Heating, Ventilation and Air Conditioning) systems.

Its design is based on eco-energy with a reduction in energy consumption of up to 70% compared to a conventional control system.

It is eco-friendly and complies with directives such as RoHS, WEEE, etc.relating to environmental protection.

The Altivar 212 is operational from the moment the power is turned on; it can be used to achieve your building's maximum energy efficiency.

Applications

Ventilation

Heating & Air conditioning

Pumping

Optimization of building management

The Altivar 212 drive considerably improves building management by:

- Simplifying circuits by removing flow control valves and dampers,
- Offering flexibility and ease of adjustment for installations, thanks to its compatibility with building management system connectivity
- Reducing noise pollution (noise caused by air flow and motor)

integrating EMC filters, categories C1 to C3 depending on the model, which has the following advantages:

Quick Look Video

- Compact size
- Simplified wiring

The Altivar 212 offer helps to reduce equipment costs while optimizing its performance.

Its various standard versions make it possible to reduce installation costs by

Compliance with international standards & certifications

The Altivar 212 conforms to international standards and is in accordance with recommendations relating to electrical industrial control devices, including the Low Voltage Directive and IEC/EN 61800-5-1. It takes into account observing requirements in respect of electromagnetic compatibility and conforms to international standard IEC/EN 61800-3 (immunity and conducted and radiated EMC emissions).

The entire range has obtained € marking according to the European Low Voltage (2006/95/EC) and EMC (2004/108/EC) Directives. The range is UL 508C, CSA, C-Tick and NOM certified.

Flexible communication adapted to building management

The Altivar 212 drive is easily adapted to building management systems thanks to its numerous functions and communication protocols integrated as standard: Modbus, METASYS N2®, APOGEE FLN P1® and BACnet®. With these protocols offered as standard and the LonWorks® communication card offered as an option, the Altivar 212 drive is optimized for the building market (HVAC).

Quick and easy dialogue to make your installations easier to use

Numerous programming tools are also included in the Altivar 212 offer, making installations quick, easy and cost-effective.

Introduction

ATV 212HD22N4

does not handle

Applications (continued)

The Altivar 212 range of variable speed drives extends across a range of motor power ratings from 1 HP to 100 HP,0.75 kW to 75 kW with the following types of power supply:

- 200...240 V three-phase, 1 HP to 40 HP, 0.75 kW to 30 kW, IP 21 (ATV 212HeeeM3X)
- 380...480 V three-phase, 1 HP to 100 HP, 0.75 kW to 75 kW, IP 21 (ATV 212HeeeN4)
- 380...480 V three-phase, 1 HP to 100 HP, 0.75 kW to 75 kW, UL Type 12/IP 55 (ATV 212WeeeN4 and ATV 212WeeeN4C)

Altivar 212 drives are compact IP 21 or UL Type 12/IP 55 products which meet electromagnetic compatibility requirements and reduce current harmonics, causing minimal temperature rise in the cables.

Compliance with electromagnetic compatibility (EMC) requirements for the protection of equipment

The built-in EMC filters in ATV 212000N4 and ATV 212W00N4C drives and compliance with EMC requirements simplify installation and provide a very economical means of ensuring devices meet the criteria to receive the C€ mark.

The EMC filters can be used to meet the requirements of the IEC/EN 61800-3, category C2 or C3 for ATV 212000N4, category C1 for ATV 212W000N4C.

ATV 212HeeeM3X drives have been designed without an EMC filter. Filters are available as an option and can be installed by the user to reduce emission levels.

Reduced Harmonic Technology (RHT)

An innovative technology for managing current harmonics: cable temperature rise reduction technology

(1) Maximum THDI in compliance with standard IEC/EN 61000-3-12

Innovative technology for managing harmonics

Thanks to its Reduced Harmonic Technology (RHT), the Altivar 212 drive offers immediate, disturbance-free operation. This technology avoids having to resort to additional options such as a line choke or DC choke to deal with current harmonics. This makes it possible to obtain a THDI(1) of less than 35%, a much lower value than the 48% level of THDI imposed by standard IEC/EN 61000-3-12.

With the Altivar 212 range, you avoid the cost of adding a line choke or DC choke, you reduce the time spent on wiring, you optimize the enclosure size and you reduce the

This technology can also triple the service life of the DC capacitors.

Better management of motor disturbance

The Altivar 212 offers optional motor chokes which can increase the maximum cable lengths between the drive and the motor and limit disturbance at the motor terminals.

Introduction

Side-by-side mounting of Altivar 212 drives

Product

The compact nature of the Altivar 212 range simplifies installation and reduces costs by optimizing the size of enclosures (whether floor-standing or wall-mounted).

Altivar 212 drives can be mounted in a variety of ways to adapt to the needs of an installation. They can be mounted side by side, and can also be wall-mounted in compliance with UL Type 1 requirements using kits **VW3A3181•** and **VW3A920•**. They are designed to operate in an enclosure at an ambient temperature of + 40°C or + 50°C depending on the model, without derating, or from + 50°C or + 60°C depending on the model, with derating.

The Altivar 212 drive includes 3 logic inputs, 2 analog inputs, 1 analog output and 2 relay outputs (with 1 NO and 1 NO/NC contacts). It also includes an integrated 4 digit, 7 segment LED display with 7 button keypad, as well as RJ45 Modbus™ port, plus a 4 screw removable terminal block for software selectable BACnet, Modbus, METASYS N2 or APOGEE P1 communication protocols. LonWorks is available in an option card.

Numerous configuration tools

The Altivar 212 range offers a wide range of dialogue and configuration tools that make it quick, easy and cost-effective to install.

LCD Keypad (3)

The Altivar 212 drive (1) can be used with the remote graphic display keypad, common to all Schneider Electric's variable speed drive ranges.

This keypad is very user-friendly when performing startup and maintenance operations thanks to its full-text screen, online help screens and text in the user's language (6 factory-installed languages available).

It can be remotely mounted on an enclosure door with IP 54 or IP 65 degree of protection.

SoMove software (2)

SoMove software is a PC based application. It can be used to edit the Altivar 212 drive parameters, save configurations, import them from a PC and export them to a PC.

Multi-Loader configuration tool (4)

The Multi-Loader tool enables configurations to be copied from a PC or a drive and duplicated on another drive. The Altivar 212 drives must be powered-up.

Quick menu tool

The Altivar 212 drive offers a quick setup function in the form of its Quick menu, which includes the 10 key installation parameters (acceleration, deceleration, motor parameters, etc.).

Free iPad® app (5)

The Altivar 212 drive can be connected directly to an iPad with optional 30-pin mobile to RS485 with RJ45 connector converter cable (model VW3A8151R20U).

Introduction

Example of an application requiring the use of dedicated building functions

Functions

Dedicated functions for ventilation applications

- Noise reduction due to the switching frequency, which is adjustable up to 16 kHz during operation
- Automatic catching of a spinning load with speed detection
- Adaptation of current limiting according to speed
- Reference calibration and limitation

Protection functions

- Smoke purge system (forced operation with fault inhibition)
- Damper control with end switch interlock
- Machine protection via skip frequency function (resonance suppression).

Dedicated functions for pumping applications

Sleep/wake-up

Protection functions

- Protection against overloads and overcurrents in continuous operation (pump jamming)
- Machine mechanical protection with control of operating direction
- Protection of the installation by means of underload and overload detection

Programming Manual

Universal functions designed specifically for building applications

- Energy saving ratio
- Auto-tuning
- Integrated PID regulator with preset references and automatic/manual ("Auto/Man.") mode
- Automatic ramp adaptation, ramp switching, ramp profile
- Switching between sets of motor rating data (Multimotor)
- Switching of references and run command using the LOC/REM key
- Preset speeds
- Monitoring, measurement of energy consumption
- kWh and elapsed run time meters

Protection functions

- Motor and drive thermal protection, via a built-in PTC thermistor probe
- Protection via management of multiple detected faults and configurable alarms

Specifications Electrical & Environmental

Electrical Specif	ications		
Input power	Voltage	٧	200 - 15% to 240 + 10% three-phase for drives ATV212HeeeM3X 380 - 15% to 480 + 10% three-phase for drives ATV212HeeeN4, WeeeN4, WeeN4C
	Frequency	Hz	5060 ± 5%
Drive output voltages		V	200240 three-phase for drives ATV212HoooM3X 380480 three-phase for drives ATV212HoooN4, WoooN4, WoooN4C
Output frequency range		Hz	0.5200
Configurable switching fre	equency	kHz	The switching frequency can be set between 6 and 16 kHz for all ratings. These values are given for a nominal switching frequency of: 12 kHz up to ATV212HD15M3X and up to ATV212HD15N4 8 kHz for ATV212HD18M3XHD30M3X and ATV212HD18N4HD75N4 drives 6 kHz for ATV212HD22N4S for use in continuous operation at 40°C (104 °F) ambient. In general, derate is 10% for every 2kHz increase in carrier frequency. Refer to the Installation Manual for derating curves for each Altivar 212 drive.
Speed range			110 for asynchronous motors
Transient overtorque			Transient overload: 110% of the nominal drive current for 60 seconds
Braking torque			DC Injection only
Maximum transient curren	t		110% of the nominal drive current for 60 seconds, 180% for 2 seconds
Motor control profiles			"For asynchronous motors: Sensorless flux vector, 2 point volts/hertz, quadratic volts/hertz, energy savings mode: a optimization motor algorithm that automatically optimizes voltage based on load."
Maximum length of motor	Shielded cable	m	50
cable (including tap links)	Unshielded cable	m	100
Drive noise level	All drives	dBA	54 dB conforming to 86/188/EEC
Electrical isolation			Galvanic isolation between power and control (inputs, outputs and power supplies)

Vibration resistance Drive not DIN rail mounted		According to IEC/EN 60068-2-6: 1.5 mm peak from 3 to 13 Hz According to IEC/EN 60068-2-8: 1 gn from 13 to 200 Hz
Shock resistance		15 gn for 11 ms conforming to EN/IEC 60068-2-27
Maximum ambient pollution Definition of insulation		1 HP to 25 HP @ 200/240 V, 1 HP to 5 HP @ 380/480 V: Pollution degree 2 per IEC/EN 61800-5-1, 30 HP to 40 HP @ 200/240 V, 30 HP to 100 HP @ 380/480 V: Pollution degree 3 per IEC/EN 61800-5-1
Environmental conditions Use		IEC 60721-3-3 classes 3C1 and 3S2
Relative humidity	%	up to 95% non-condensing , IEC 60068-2-3
Ambient air Operation temperature	°C	0 to + 40C operational without de-rating, up to 50C with de-rating. See Installation manual for deratings
around the Storage ATV12••••• device	°C	- 25+ 70
Maximum operating altitude	m	Up to 3,300 ft (1,000 meters) without de-rating, de-rate nominal current by 1% for each additional 330 ft (100m) up to 10,000 ft (3,000 m) Limit to 6,600 ft (2,000 m) if supplied by corner grounded distribution system
Operating position Maximum permanent angle in relation to the normal vertical mounting position		10° 10°

Consultant Specifications

White Paper "Improve Efficiency"

Specifications *Certifications & Compliance*

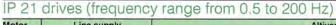
Certifications and Compliance	
Conformity to standards	Altivar 212 drives have been developed to conform to international standards and the recommendations relating to electrical industrial control equipment (IEC, EN), in particular: IEC/EN 61000-3-12 THDI harmonic standard, IEC 61800-5-1.
EMC Immunity	Conducted radio-frequency immunity test level 3 conforming to IEC 61000-4-6 Radiated radio-frequency electromagnetic field immunity test level 3 conforming to IEC 61000-4-3 Voltage dips and interruptions immunity test conforming to IEC 61000-4-11 1.2/50 µs - 8/20 µs surge immunity test level 3 IEC 61000-4-5 Electrical fast transient/burst immunity test level 4 conforming to IEC 61000-4-4 Electrostatic discharge immunity test level 3 conforming to IEC 61000-4-2
Conducted & Radiated EMC emissions for drives	ATV212 H and W N4 range: Integrated Class 2 EMC filter for radiated and conducted emissions, IEC 61800-3, category C2 and C3 ATV212 W N4C range: Integrated Class 2 EMC filter for radiated and conducted emissions, IEC 61800-3, category C1 ATV212H M3X range: No integrated EMC filter (use optional filters to reduce emission levels)
CE marking	The drives are marked C€ according to the European low voltage (2006/95/EC) and EMC (2004/108/EC) directives
Product certifications	UL File E116875, CSA 2278406, UL508C, Plenum rated per UL508C for UL1995 installations, C-Tick, NOM 117, CE marked
Degree of protection	ATV212H range: ■ IP20, Conformal coating per IEC 60721-3-3 classes 3C2 and 3S2, Type 1 with optional conduit entrance kit ATV212W range: ■ IP54 / Type 12, Conformal coating per IEC 60721-3-3 classes 3C2 and 3S2

Specifications I/O & Control

We shirt we start	Specifications	
Available internal supplies	P24	Short-circuit and overload protection: 24 Vdc supply (min. 21 Vdc, max. 27 Vdc), maximum current: 200 mA
Configurable Analog input	VIB	Voltage analog input, configurable as an analog input or as a PTC probe input. Voltage analog input: 0–10 Vdc, impedance 30 kW max, voltage 24 Vdc Max. sampling time: 22 ms ±0.5 ms Resolution: 10 bits Accuracy: ±0.6% for a temperature variation of 140 °F (60 °C) Linearity: ±0.15% of the maximum value PTC probe input: 6 probes max. mounted in series Nominal value < 1.5 kW Trip resistance 3 kW, reset value 1.8 kW Short-circuit detection threshold < 50 W
Configurable Analog output	FM	1 switch-configurable (SW101) voltage or current analog output: Voltage analog output 0–10 Vdc, minimum load impedance 7.62 kW Current analog output X–Y mA by programming X and Y from 0 to 20 mA, maximum load impedance: 970 Ω Max. sampling time: 2 ms ±0.5 ms Resolution: 10 bits Accuracy: ±1 % for a temperature variation of 140 °F (60 °C) Linearity: ±0.2%
Configurable Relay	FLA, FLB, FLC	1 relay logic output, 1 N/O contact, and 1 N/C contact with common point Minimum switching capacity: 10 mA for 5 Vdc Maximum switching capacity: On resistive load (cos φ = 1): 5 A for 250 Vac or 30 Vdc On inductive load (cos φ = 0.4 and L/R = 7 ms): 2 A for 250 Vac or 30 Vdc Max. response time: 10 ms
outputs	RYA, RYC	1 relay logic output, 1 N/O contact Minimum switching capacity: 3 mA for 24 Vdc Maximum switching capacity: On resistive load (cos φ = 1): 3 A for 250 Vac or 30 Vdc On inductive load (cos φ = 0.4 and L/R = 7 ms): 2 A for 250 Vac or 30 Vdc Max. response time: 7 ms ± 0.5 ms
Ll logic inputs	F, R, RES	3 programmable logic inputs, 24 Vdc, compatible with level 1 PLC, IEC 65A-68 standard ■ Impedance: 4.7 kW ■ Maximum voltage: 30 Vdc ■ Max. sampling time: 2 ms ±0.5 ms ■ Multiple assignment makes it possible to configure several functions on one input
		Positive logic (Source): State 0 if ≤ 5 Vdc or logic input not wired, state 1 if ≥ 11 Vdc
		Negative logic (Sink): State 0 if ≥ 16 Vdc or logic input not wired, state 1 if ≤ 10 Vdc
Configurable Analog/Logic output	VIA	Switch-configurable voltage or current analog input: Voltage analog input: 0–10 Vdc, impedance 30 kW maximum voltage: 24 Vdc Analog current input: X–Y mA by programming X and Y from 0 to 20 mA, impedance = 250 W Max. sampling time: 3.5 ms ±0.5 ms Resolution: 10 bits Accuracy: ±0.6% for a temperature variation of 140 °F (60 °C) Linearity: ±0.15% of the maximum value *This analog input is also configurable as a logic input. Consult the Altivar 212 Programming Manual for more information.

Specifications I/O & Control

Protocol		Modbus				
Structure	Connector	1 RJ45 connector				
	Physical interface	2-wire RS 485				
	Transmission mode	RTU				
	Transmission speed	Configurable via the Human-Machine interface, remote graphic display keypad or SoMove setup software: 4800 bps, 9600 bps, 19200 bps or 38400 bps				
	Number of subscribers	31 maximum				
	Polarization	No polarization impedance. This must be provided by the wiring system (for example, in the master)				
	Address	1 to 247, configurable via the Human-Machine interface, remote display terminal or SoMove setup software				
Embedded Communications		RJ45 port for remote keypad connection Multi-loader PC software Bluetooth dongle				
		Embedded four screw removable terminal for daisy chain connection for these communication networks: Modbus BACnet Metesys N2 Apogee P1				
Diagnostics	Via the on board interface or remote graphic display keypad	On display unit: 4 digit, 7 segment LED display				
Maximum I/O wire si and tightening torqu		Screw Terminals Wire size: 0.75 to 2.5 mm² (AWG 18 to 14) Tightening Torque: 0.5 to 0.6 N•m (4.4 to 5.3 lb-in) Spring Terminals 0.2 to 1 mm² (AWG 24 to 16)				
Acceleration and de	celeration ramps	Ramp profile: Linear from 0 to 3200 s S ramp U ramp Automatic adaptation of deceleration ramp time if braking capacities exceeded, although this adaptation can be disabled (use of braking unit)				
Internal braking		By DC injection: automatically as soon as the estimated output frequency drops to < 0.2 Hz, period adjustable from 0.1 to 30 s or continuous, current adjustable from 0 to 1.2 In				
Main drive protection	n features	 Thermal protection against overheating Protection against short-circuits between motor phases Overcurrent protection between motor phases and ground protection in the event of line overvoltage and undervoltage Input phase loss protection, in three-phase 				
Motor protection		Class 10 thermal protection integrated in the drive by continuous calculation of the I²t				
Frequency resolution	n	Display unit: 0.1 Hz Analog inputs: 10-bit A/D converter				
Response time on a	change of setpoint	22 ms ± 0.5 ms (VIB) - analog input(s) 3.5 ms ± 0.5 ms (VIA) - analog input(s) 2 ms ± 0.5 ms (RES) - discrete input(s) 2 ms ± 0.5 ms (R) - discrete input(s) 2 ms ± 0.5 ms (F) - discrete input(s)				


SpecificationsAdditional Information

Additional Information	
Integrated Fan and Pump Functionality	Run command Input to drive by remote contact from the BAS, 24 vdc supplied by VFD Speed command Input to drive from the BAS; typically 4-20mAdc or 0-10 Vdc Run status Output contact from drive to the BAS; 1 N.O. contact on drive Speed feedback Analog output from drive to the BAS; typically 4-20mAdc, or assignable to meter values Detected Fault Output contact from drive to the BAS; 1 N.O. & 1 N.C. contact on drive Loss of Speed Configuration to run at last speed or a pre-defined speed on loss of speed command Automatic Restart Selectable configuration to automatically restart after cause of the detected fault is cleared Skip Frequency Bands Three skip frequency settings with adjustable bandwidth to tune out resonating frequencies in piping or ductwork Local/Remote Control Keypad selectable: local keypad control for Run, Stop and speed control or from remote signal from BAS Catch on the fly configuration to initiate speed and direction search to provide smooth start of windmilling fans Damper Control Relay Output on the drive to control damper opening sequence, and wait for feedback to start the motor Smoke Purge Override Logic Input on the drive configured to run the motor at configured speed for forced ventilation Broken Belt Detection Configuration to detect under load condition and initiate alarm sequence PID Control Set point and feedback inputs for proportional, integral, and derivative control sleep/Wake-up Configuration in the drive to stop the pump at low or no flow and re-start on demand for flow Pump Jam Management Configuration to manage blocked pump impeller Motor direction protection Configuration to avoid operation in reverse direction
Typical Air Handling Applications	 HVAC supply and return fans Exhaust and ventilation fans Cooling tower fans Energy recovery wheels Typical pumping
Harmonic Abatement	Embedded reduced harmonic technology provides <35% THDI at VFD input terminals, which is equivalent to a 3% line reactor or DC choke.
Power Factor	Above 99 %
Efficiency	Above 96% at full load

Selection Table IP 21 drives

ATV 212H075M3X EMC plate not mounted

Motor		Line supply				Altivar 212							
Power	Line current ⁽¹⁾		Maximum prospective line lsc	Max. continuous output current (In)(2)	Maximum transient current for 60 s	Dissipated power at maximum output current	THDI ⁽³⁾	Part number	Frame size	Weight			
		200 V 240 V			230 V		240 V	240 V					
HP	kW	A	A	kA	A	A	W	%			Ibs	kg	
				Three-phase	supply vol	tage: 200	240 V 50/60	Hz, with	hout EMC filter(4)				
1	0.75	3.3	2.7	5	4.6	5.1	63	31.3	ATV212H075M3X	1	4.0	1.8	
2	1.5	6.1	5.1	5	7.5	8.3	101	31.6	ATV212HU15M3X	0 1	4.0	1.8	

ATV 212HD15N4 EMC plate not mounted

		200 V	240 V		230 V		240 V	7				
HP	kW	A	Α	kA	A	A	W	%			Ibs	kg
			Th	ree-phas	e supply volt	age: 200	.240 V 50/6	0 Hz, wit	thout EMC filter(4)			
1	0.75	3.3	2.7	5	4.6	5.1	63	31.3	ATV212H075M3X	1	4.0	1.8
2	1.5	6.1	5.1	5	7.5	8.3	101	31.6	ATV212HU15M3X	1	4.0	1.8
3	2.2	8.7	7.3	5	10.6	11.7	120	30.7	ATV212HU22M3X	1	4.0	1.8
5	3	-	10	5	13.7	15.1	146	32.4	ATV212HU30M3X	2	6.7	3.1
5	4	14.6	13	5	18.7	19.3	193	31.1	ATV212HU40M3X	2	6.7	3.1
7.5	5.5	20.8	17.3	22	24.2	26.6	249	30.7	ATV212HU55M3X	3	13.5	6.1
10	7.5	27.9	23.3	22	32	35.2	346	30.8	ATV212HU75M3X	3	13.5	6.1
15	11	42.1	34.4	22	46.2	50.8	459	35.5	ATV212HD11M3X	4	25.4	11.5
20	15	56.1	45.5	22	61	67.1	629	33.3	ATV212HD15M3X	4	25.4	11.5
25	18.5	67.3	55.8	22	74.8	82.3	698	32	ATV212HD18M3X	4	25.4	11.5
30	22	80.4	66.4	22	88	96.8	763	35	ATV212HD22M3X	5	60.6	27.4
40	30	113.3	89.5	22	117	128.7	1085	32.1	ATV212HD30M3X	7	85.4	38.7
		380 V	480 V		(5)		380 V					
HP	kW	A	A	kA	A	A	W	%		-	lbs	ka

ATV 212HD55N4 EMC plate not mounted

HP	kW	A	A	kA	A	Α	W	%			lbs	kg
	Т	hree-	phase si	upply volt	age: 3804	180 V 50/60 I	Hz, with in	tegrated	category C2 or C3	EMC	filter	
1	0.75	1.7	1.4	5	2.2	2.4	55	32.8	ATV212H075N4	1	4.4	2.0
2	1.5	3.2	2.5	5	3.7	4	78	30.9	ATV212HU15N4	1	4.4	2.0
3	2.2	4.6	3.6	5	5.1	5.6	103	30.5	ATV212HU22N4	1	4.4	2.0
-	3	6.2	4.9	5	7.2	7.9	137	31.2	ATV212HU30N4	2	7.4	3.4
5	4	8.1	6.4	5	9.1	10	176	30.6	ATV212HU40N4	2	7.4	3.4
7.5	5.5	10.9	8.6	22	12	13.2	215	30.5	ATV212HU55N4	2	7.4	3.4
10	7.5	14.7	11.7	22	16	17.6	291	30.9	ATV212HU75N4	3	14.2	6.5
15	11	21.1	16.8	22	22.5	24.8	430	30.4	ATV212HD11N4	3	14.2	6.5
20	15	28.5	22.8	22	30.5	33.6	625	30.9	ATV212HD15N4	4	25.7	11.7
25	18.5	34.8	27.8	22	37	40.7	603	30.5	ATV212HD18N4	4	25.7	11.7
30	22	41.1	32.6	22	43.5	47.9	723	31.9	ATV212HD22N4S	4	25.7	11.7
30	22	41.6	33.1	22	43.5	47.9	626	30.7	ATV212HD22N4	5	58.3	26.4
40	30	56.7	44.7	22	58.5	64.4	847	30	ATV212HD30N4	5	58.3	26.4
50	37	68.9	54.4	22	79	86.9	976	30.3	ATV212HD37N4	6	84.0	38.1
60	45	83.8	65.9	22	94	103.4	1253	30.2	ATV212HD45N4	6	84.0	38.1
75	55	102.7	89	22	116	127.6	1455	32.7	ATV212HD55N4	7	122.1	55.4
100	75	141.8	111.3	22	160	176	1945	31.1	ATV212HD75N4	7	122.1	55.4

Installation Manual

CAD Drawings

Product Data Sheets

Swivel Shots

N4C = 380 - 480 V three-phase(7)

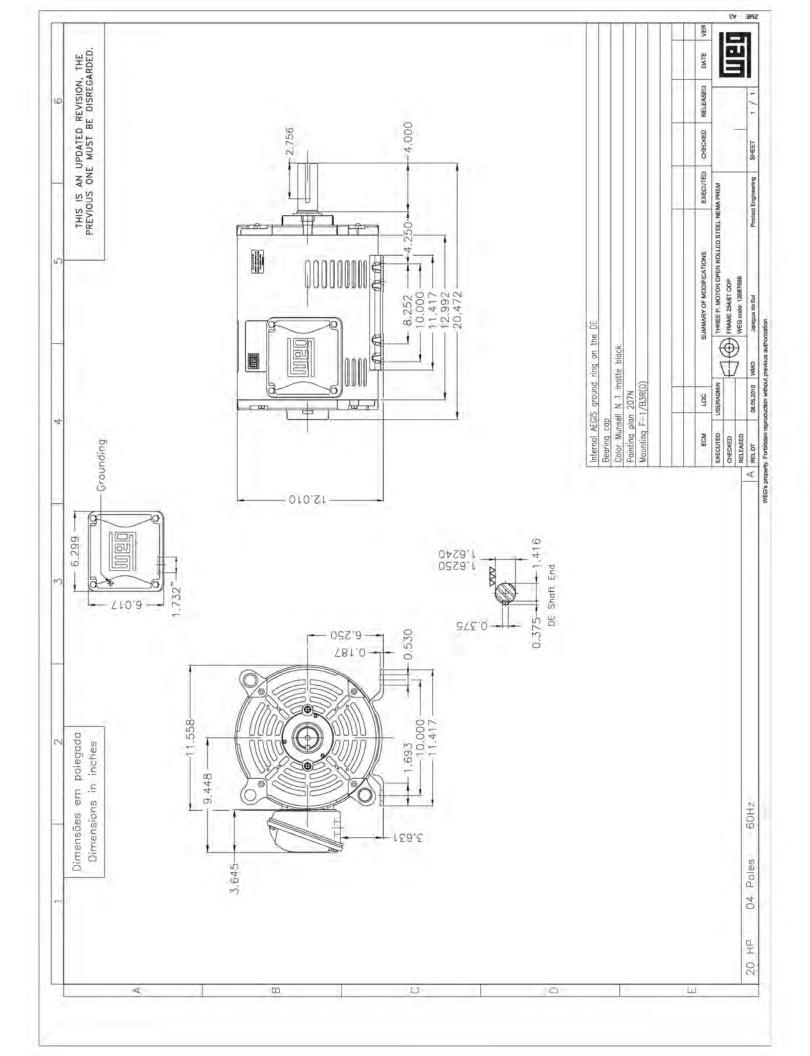
Dimensio	ns	(overall)
France store		

Frame size	WXHXD									
	EMC plate	mounted	EMC plate not mounted							
1 2 3 4 5 6 7	inches	mm	inches	mm						
1	4.2 x 7.6 x 5.9	107 x 192 x 150	4.2 x 5.6 x 5.9	107 x 143 x 150						
2	16.2 x 9.1 x 5.9	142 x 232 x 150	16.2 x 7.2 x 5.9	142 x 184 x 150						
3	7.1 x 12.1 x 6.7	180 x 307 x 170	7.1 x 9.1 x 6.7	180 x 232 x 170						
4	9.6 x 15.9 x 7.5	245 x 405 x 190	9.6 x 13 x 7.5	245 x 330 x 190						
5	9.4 x 21.3 x 8.4	240 x 542 x 214	9.4 x 16.5 x 8.4	240 x 420 x 214						
6	9.4 x 26.1 x 9.6	240 x 663 x 244	9.4 x 21.7 x 9.6	240 x 550 x 244						
7	12.6 x 28.5 x 11.4	320 x 723 x 290	12.6 x 23.8 x 11.4	320 x 605 x 290						

Part Number Explanation Power Range (kW) $0 \bullet \bullet = 0.01 \times \bullet \bullet (075 = 0.01 \times 75 = 0.75 \text{ kW})$ Product Family $U = 0.1 \times (U75 = 0.1 \times 75 = 7.5 \text{ kW})$ Altivar 212 $D \bullet \bullet = 1.0 \times \bullet \bullet (D75 = 1.0 \times 75 = 75 \text{ kW})$ ATV212 Ues N4 Doe N4C Supply Volta H - IP21 product M3X = 200 - 240 V three-phase W - Type 12/IP55 product N4 = 380 - 480 V three-phase(6)

(1) Typical value for the indicated motor power and for the maximum prospective line Isc.
(2) Values given for nominal switching frequency of 12 kHz up to ATV212HD15M3X and up to ATV212HD15N4 or 8 kHz for ATV21HD18M3X...HD30M3X and ATV212HD18N4...HD75N4, for use in continuous operation. Switching frequency can be set between 6 and 16 kHz for all ratings. Above 8 kHz or 12 kHz, depending on the rating, drives will reduce switching frequency automatically in the event of an excessive temperature rise. For continuous operation above the nominal switching frequency, derate nominal drive current. Nominal motor current must not exceed this derating value. See the derating curves on our website www.schneider-electric.com. (3) Total current harmonic distortion in accordance with IEC/EN 61000-3-12.

(4) Drives are supplied with an EMC plate, for customer assembly (5) Value given at 380 V (IEC)/460 V (NEC).


(6) with integrated EMC filter C2, C3 (7) with integrated C1 EMC lilter for UL Type 12/IP55 products ATV212W

DATA SHEET

Three Phase Induction Motor - Squirrel Cage

Customer		15					
Product line		Rolled Steel NEMA Premium Efficiency Three-Phase	Product co		12687686 02018OT3E2	56T-SG	
Frame Insulation class Duty cycle Ambient temperature Altitude Design		254/6T F Cont.(S1) -20°C to +40°C 1000 m.a.s.l.	Cooling method Mounting Rotation ¹ Starting method Approx. weight ³ Moment of inertia (: IC01 - ODP : F-1 : Both (CW and CCW) : Direct On Line : 97.2 kg : 0.0939 kgm²		
Output [HP]		20			20		
Poles		4			4		
Frequency [Hz]		60			50		
Rated voltage [V]		208-230/460			190/380		
Rated current [A]		55.3-50.0/25.0			59.8/29.9		
L. R. Amperes [A]	+	348-315/158			311/155		
LRC [A]		6.3x(Code G)		5	.2x(Code F)		
No load current [A]		19.7-22.9/11.4			22.4/11.2		
Rated speed [RPM	[]	1770			1460		
Slip [%]		1.67			2.67		
Rated torque [kgfn		8.09			9.81		
Locked rotor torqu		240			180		
Breakdown torque	[%]	290			220		
Service factor		1.15		1,15			
Temperature rise		80 K			80 K		
Locked rotor time		27s (cold) 15s (ho	t)	0s (cold) 0s (hot)			
Noise level ²		64.0 dB(A)		62.0 dB(A)			
Efficiency (%)	25%	91.7		93.0			
	50%	92.4			91.8 91.2		
Linciency (70)	75%	92.4					
	100%	93.0			89.7		
	25%	0.38	0.46				
Power Factor	50%	0.63			0.72 0.82 0.85		
Power Factor	75%	0.74					
	100%	0.81					
Bearing type Sealing Lubrication interv Lubricant amoun Lubricant type		Drive end Non drive end 6309 Z C3 6208 Z C3 Without Without Bearing Seal Bearing Seal 20000 h 20000 h 13 g 8 g Mobil Polyrex EM	Max. traction Max. compression	Max. traction : 372 kgf			
Notes		,					
		ncel the previous one, which	These are average				
	otor from the m and with reight subjections.	e shaft end. tolerance of +3dB(A). ct to changes after	power supply, subje MG-1.	ct to the toler	ances stipula	ated in NEMA	
Rev.		Changes Summary	Perform	ned C	hecked	Date	
5.6					-		
Performed by		12			C. 17.	S. Carrier	
Checked by					Page	Revision	

Manufacturer Specification Sheets

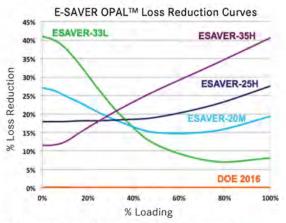
ECM 10: Premium Efficiency Transformers

Investment Grade Audit

This page is intentionally left blank.

E-SAVER OPAL™ Series

HIGH PERFORMANCE TRANSFORMERS OPTIMIZED TO DELIVER 25 - 50% LESS LOSSES THAN DOE 2016 MINIMUM EFFICIENCY REQUIREMENT


APPLICATION

The E-SAVER OPAL™ Series is a family of ultra-efficient dry-type isolation transformers that has been optimized for different application load profiles, to maximize energy savings and ensure electrical system compatibility. These energy optimized units are perfect for Net Zero, LEED® and High Performing Buildings.

OPALTM

OPTIMIZED PERFORMANCE FOR THE APPLICATION LOAD

To achieve 25-50% more savings than the DOE 2016 requirement, Powersmiths' developed and implemented a design best practice called OPAL™ – Optimized Performance for the Application Load. Recognizing that the transformer has much more impact in an electrical system than just efficiency, OPAL considers the system as a whole, including goals like managing impedance, arc flash, fault level, inrush, harmonics, and more. OPAL™ is possible thanks to the tight feedback loop between design, onsite manufacturing, and extensive ongoing real world operating performance verification. The result is more savings for the same dollar.

DOE 2016 IDENTIFIES BILLIONS IN SAVINGS BEYOND NEW LEGAL MINIMUM

Most manufacturers have designed their low-voltage transformers to just meet the new U.S. Dept. of Energy law (DOE 2016), setting minimum efficiency at a single required 35% load point, under an ideal sine wave factory test profile, sacrificing performance elsewhere. The DOE quantifies savings for going beyond DOE 2016 in billions of dollars. Furthermore, the DOE states that lifecycle savings can be maximized by optimizing for real-world loading. Powersmiths OPAL™ enables customers to access these savings − backed by real-world performance verification.

EXPANDED KVA SELECTION ENABLES RIGHT-SIZING

Powersmiths enables right-sizing of electrical infrastructure by offering a much broader selection of transformer kVA sizes. The capital cost, operating cost and footprint reductions can be dramatic - on the order of 30-50%, through smaller transformers, breakers, conductors, and distribution panels.

GUARANTEED PERFORMANCE FOR 32 YEARS

Powersmiths guarantees that every transformer we manufacture meets our published technical data, and furthermore, that this performance is met over the full term of the 32-year pro-rated warranty. Being able to trust that savings are both real and long-term is part of why organizations choose Powersmiths.

75kVA E-Saver OPAL™ Series shown with Cyberhawk TX™, hinged door and Rotatable IR Port™

K-RATING IS A MODERN REQUIREMENT

Many general purpose transformers are purchased and installed because they have the lowest first cost, however, they carry a UL label on the basis of feeding only linear loads. Since most connected loads today are electronic with nonlinear profiles, a low-voltage isolation transformer needs to be K-rated in order to have a valid UL listing for most applications today. E-Savers are appropriately K-rated.

ENVIRONMENTAL/GREEN BUILDING/LEED®/NET ZERO

By going meaningfully beyond the DOE 2016 baseline efficiency, the E-Saver™ contributes to green building, LEED®, Net Zero and carbon footprint reduction goals. Additional benefits of Powersmiths products include our ISO14001 certified manufacturing, integrated metering options and ability to integrate with the Powersmiths WOW™ Sustainability Management Platform.

CERTIFICATIONS & TESTING

Powersmiths certifications include ISO 9001 (Quality), ISO 14001 (Environment), ISO 17025 (Efficiency Test Lab), UL and CSA. Powersmiths has a production integrated nonlinear load test program that enables efficiency verification under real-world conditions, as well as IPMVP compliant field measurement of losses and efficiency, and Certified Test Lab Load Profile Test Reports.

METERING & ARC FLASH OPTIONS

Integrated metering can provide information about capacity utilization, load profiles, power quality and energy use. The lockable hinged door option, as well as our patented 360° Rotatable IR PortTM option enable quick and safe access to internal transformer connections, and reduces arc flash risk. Powersmiths also offers transformers with Integrated Power Distribution. For details see the Energy Station TXTM product information.

E-SAVER OPAL MODEL COMPARISON MATRIX²

Model	Optimized Load Range	Saving beyond DOE 2016*	Temp. Rise	Winding Material	Continuous Overload Capacity	K-Rating	Applications
E-Saver-33L	0-25%	33%	<130°C	CU	5%	K7	Most Applications - office, education, healthcare, most other institutional, commerical (light load feeding electronic equipment).
E-Saver-20M	0-100%	20%	<115°C	cu	15%	K1, K9, K13	Where equipment or process loading varies widely, or where the load is expected to change significantly over time.
E-Saver-25H	75-100%	25%	<105°C	CU/AL CU opt.	20%	K13	Dedicated equipment (fans, pumps, elevators, etc.), labs, broadcast, datacenter, industrial where loading is significant.
T1000-30H	50-100%	30%	<105°C	cu	20%	K20	Harmonic Mitigation Transformer – for heavy, harmonic-rich loads, high densities of electronic equipment, where voltage distortion could become excessive.
E-Saver-35H	75-100%	35%	<80°C	CU/AL CU opt.	33%	K20	Heavy loading for extended hours, and need for lower losses & operating costs, overload capacity, faster payback if high energy rate.
E-Saver-50H	75-100%	50%	<65°C	CU	50%	K30	For Special Applications close to full continuous load, where full load losses & heat output must be minimized, significant overload capacity.
E-Saver-SOL	0-100%	30%	<105°C	CU/AL CU opt.	20%	K20' (flut nut (required (n-large)	Solar Applications - to avoid solar production waste - minimize transformer idling and full load losses, continuous overload capacity for longer life.

^{*}Estimated average savings vs. DOE 2016 referance for the application load profile

** K-Rating per IEEE-C57.110

*** CU - Copper, AL Aluminum, CU/AL Copper primary with Aluminum Secondary

**** The high K-factor rating is not the goal of the design, but a consequence of the low current densities used to achieve the high loading efficiency goals

¹ U.S. Department of Energy, 10 CFR Part 431, [Docket No. EERE-2010-BT-STD-0048] Energy Conservation Programs
Energy Conservation Standards for Distribution Transformers: Final Rule, April 16, 2013

TECHNICAL SPECIFICATIONS

The E-Sayer™ is an ultra-efficient low-voltage dry-type isolation transformer that meaningfully exceeds the U.S. Dept. of Energy's new minimum efficiency law, commonly referred to as DOE 2016. Each model is optimized to maximize energy savings and electrical system compatibility in each target application, and has a K-factor listing per UL 1561 and an application appropriate K-rating per C57.110 (see Comparison Matrix). For models with an 'H' designation, K-rating is reduced by one level for 400kVA and larger, reflecting lower harmonic content reality at heavy loading for large kVA transformers (ex.K30>K20, K20>K13, K13>K9) to avoid overbuilding and associated unecessary cost. See table for individual model attributes.

E-Savers have a common-core (3-phase models), 10kV BIL, 200% rated neutral, are 60Hz rated (std), built to NEMA ST-20 and other applicable ANSI, IEEE standards and are UL listed and CSA approved. Both primary and secondary terminals and voltage taps (typically six 2.5%) are all front-accessible. E-Savers have a 220°C class: insulation system that is NOMEX-based with an Epoxy Co-polymer impregnant with technical performance characteristics that embed lower environmental impact, long term reliability and long life expectancy. E-Savers carry OSHPD and IBC Seismic Certification. The seismic bracing option provides a higher 2.28g certification. All E-Saver models come standard in a Type 2 ventilated drip-proof indoor enclosure made of heavy gauge steel finished with epoxy powder coating for durability and low environmental impact, and are UL Listed for 2" rear clearance - a significant improvement over the typical industry 6" limit. A wide variety of enclosures and options are

Low Noise: Keeping audible noise at a minimum is key. While the NEMA ST-20 standard sets levels referenced by industry only a type test, not a production test, is required - so transformers on actual projects may be noisy. NEMA ST-20 also allows K13 transformers to be even noisier. Powersmiths builds 3dB quieter than NEMA standard values, and 6dB quieter than the K13+ allowance. Furthermore, every unit is tested to ensure quiet operation. For very sensitive environments, an additional 2dB lower noise option is available,

Management of Impedance, Inrush, Fault Level, Arc Flash: Powersmiths' OPALTM design best practice includes addressing key transformer attributes like impedance, inrush, fault level, arc flash, to ensure smooth integration into an electrical system, avoiding the negative impacts often associated with high efficiency transformers. See individual technical data sheets for comprehensive values for all parameters.

Impedance: For 33L, 20M, 25H, 35H models, impedance is kept at or above 4.0% in order to manage downstream fault current and arc flash levels, and stay within interrupting capacity (kAIC) ratings. Higher impedance is available to meet specific project needs. 50H models are optimized to project specific requirements. Inrush: Inrush currents are managed in order to avoid nuisance tripping of the primary breaker and to enable design engineers to use standard 125% rated primary protection, thereby avoiding expensive design changes that otherwise may be needed. Very low inrush designs are available as specific projects may require, for example some datacenter and medical applications.

ORDERING INFORMATION

OPAL PRODUCT_ FAMILY	MOD	EL -	kVA	- PV	- SV	-	OPT
E-SAVER	33L 20M 25H 35H 50H	kVA Rating (9-1000	Unit kVA)	Primary Voltage Input (Up to 600V)	Vo	ondary Itage Iput	Options if Applicable (See Available

TECHNICAL DATA

kVA	Audible Noise	33L, 20M, 25H Model Weight Range (lbs)	Standard Case Size (in)	Alternate Smaller Case Size (in)*
15	42 dB	260-340	17.5W x 17D x 27.5H	17.5W x 14.5D x 25H
20	42 dB	300-380	25.5W x 18D x 30H	23W x 15.5D x 27.5H
25	42 dB	340-420	25.5W x 18D x 30H	23W x 15.5D x 27.5H
30	42 dB	380-470	25.5W x 18D x 30H	23W x 15.5D x 27.5H
45	42 dB	490-590	25.5W x 18D x 30H	No Alternate
50	42 dB	540-600	31.5W x 21.5D x 40H	No Alternate
63	47 dB	600-720	31.5W x 21.5D x 40H	26.5W x 20D x 33H
75	47 dB	650-800	31.5W x 21.5D x 40H	26.5W x 20D x 33H
100	47 dB	800-900	31.5W x 21.5D x 40H	No Alternate
112	47 dB	900-1000	31.5W x 21.5D x 40H	No Alternate
125	47 dB	1050-1150	37.5W x 26.5D x 48H	33W x 23D x 38H
150	47 dB	1170-1300	37.5W x 26.5D x 48H	33W x 23D x 38H
175	52 dB	1260-1450	37.5W x 26.5D x 48H	34.5W x 26.5D x 42H
200	52 dB	1375-1550	37.5W x 26.5D x 48H	34.5W x 26.5D x 42H
225	52 dB	1500-1700	37.5W x 31.5D x 52H	34.5W x 26.5D x 42H
250	52 dB	1650-1850	37.5W x 31.5D x 52H	37.5W x 26.5D x 48H
300	52 dB	1850-2000	37.5W x 31.5D x 52H	37.5W x 26.5D x 48H
400	57 dB	2150-2350	51.5W x 38D x 61H	43.5W x 33.5D x 55.5H
450	57 dB	2400-2650	51.5W x 38D x 61H	43.5W x 33.5D x 55.5H
500	59 dB	2800-3000	51.5W x 38D x 61H	43.5W x 33.5D x 55.5H
600	59 dB	3500-3800	64W x 47D x 67H	51.5W x 38D x 61H
750	61 dB	4000-4300	64W x 47D x 67H	Contact Factory
850	61 dB	4300-4850	64W x 47D x 67H	Contact Factory
1000	61 dB	4800-5500	64W x 53D x 67H	Contact Factory

AVAILABLE OPTIONS

Metering: Express Logger[™], SMART[™] or Cyberhawk TX[™] (see product cut sheets for details)

CC: Core & Coils available for OEM Integration

3R: Type 3R, sprinkler proof/ outdoor ventilated enclosure

OSEC: Enclosure for outdoor public areas SS: Painted stainless steel enclosure NVI: Non-ventilated indoor enclosure

IRP: 360º Rotatable IR Port

HD: Hinged Door

F50: 50 Hz design

1S: Single electrostatic shield

2S: Dual electrostatic shields

3S: Triple electrostatic shields

SPD: (120/208 V OR 277/480V)

PRO80: 80kA, 7 mode, Filter PRO 120: 120kA, 7 mode, Filter

PRO200: 200kA, 7 mode, Filter

PRO240: 240kA, 7 mode Filter

PROXX: Where XX is custom ID

LKS: Lug kit, screw-type

LKC: Lug kit, compression type

VLI: Very Low Inrush

IMP: Custom Impedance

COL: Custom color

TS: Thermal sensors at 170°C and 200°C

RTR: Routine Test Report

NLT: Nonlinear Load Test with Certificate

2016TR: DOE 2016 Test Report

CTL: ISO 17025 Certified Test Lab, load profile test

SE: Sensitive environment, extra low noise SB: Certified Seismic Bracing for 2.28g

(for Certificate details contact Powersmiths)

WM: Wall-mount kit up to 75kVA is available (sold separately)

NOTE: The above data applies to the standard configuration of each kVA. Selection of some options may change enclosure size and/or transformer weight. Some options may be mutually exclusive. Consult factory for detailed product data sheet for these and other configurations. Efficiencies tested according to U.S. Dept. of Energy's 10 CFR Part 431, a linear load test at 35% of nameplate capacity. Refer to technical data sheet for comprehensive information for each specific model, kVA, and option selected.

As design optimization is continuous, technical data is updated over time. Please check with Powersmiths for latest revision.

Copyright © 2018, Powersmiths International Corp. All rights r eserved. OPAL, Cyberhawk, E-Saver, E-Saver 2016, E-Saver-35L, E-Saver-25H, E-Saver-50H, E-Saver-20M; T1000, Express Logger, Rotatable IR Port and SMART are trademarks of Powersmiths International Corp. All other trademarks are those of their respective owners.

Please print responsibly.

POWERSMITHS INTERNATIONAL CORP. 10 Devon Road, Brampton ON, L6T 5B5 Canada

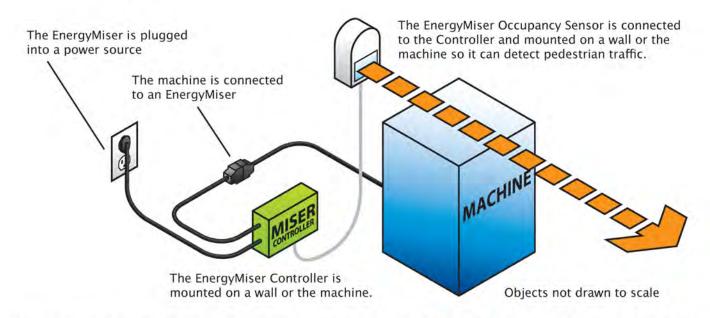
Phone: (905) 791-1493 Email: info@powersmiths.com Toll-free: (800) 747-9627 Fax: (905) 791-8870

Manufacturer Specification Sheets

ECM 11: Vending Misers

Investment Grade Audit

This page is intentionally left blank.



Energy Miser® Products are easy to install devices designed to lower the energy consumption of vending machines, commercial coolers, and other "always on" machines and appliances. No other technology can compete with its price and ease of installation for the immediate energy savings that can be achieved.

- · Win and retain accounts by offering energy-efficient technology
- Save clients up to \$150 per machine, per year
- · Typical return on investment in 12 months
- · Easy retrofit field installation
- Reduction in machine energy use an average of 35-45%
- Reduced machine maintenance and longer machine lifespans
- Environmental benefits such as reducing pollution and natural resource use

How EnergyMisers Work

External EnergyMisers use a controller and a machine mounted sensor to monitor room occupancy and temperature. If 15 minutes pass without any pedestrian traffic, the EnergyMiser will power down the machine. The machine is powered back up when people return and at regular intervals to to keep the product cold. External controllers are best suited for low traffic areas.

Internal EnergyMisers use sales based intelligence to power down the cooling system while leaving lighting and controller electronics on. While the cooling system is powered down, the internal EnergyMiser monitors the room's temperature and automatically re-powers the cooling system at regular intervals to keep the product cold. Internal controllers are best suited for high traffic areas.

Who Uses EnergyMisers

Several large retailers such as Wal-Mart and Kroger have installed EnergyMiser Products at their locations. Educational facilities along with the US Government have purchased EnergyMisers through GSA. Also, many utilities offer rebates on the purchase of EnergyMiser products and several have provided customers with EnergyMiser Products at no cost through Turnkey Programs.

EnergyMiser Products

VendingMiser®- for cold drink vending machines

- VM150 Indoor Wall Mount Controller with Occupancy Sensor
- VM151 Indoor Wall Mount Controller with 10' Repeater Cable
- VM160 Outdoor Wall Mount Controller with Occupancy Sensor and Weatherproof Enclosure
- VM161 Outdoor Wall Mount Controller with 10' Repeater Cable and Weatherproof Enclosure
- VM170 Indoor Controller with EZ Mount Z-Bracket and Occupancy Sensor
- VM171 Indoor Controller with EZ Mount L-Bracket and 10' Repeater Cable
- VM180 Outdoor Controller with EZ Mount Z-Bracket, Occupancy Sensor, and Weatherproof Enclosure
- VM181 Outdoor Controller with EZ Mount L-Bracket, 10' Repeater Cable and Weatherproof Enclosure
- VM2iQ Internal VendingMiser

CoolerMiser™ - for commercial glass-front coolers

- CM150 Indoor Wall Mount Controller with Occupancy Sensor
- CM151 Indoor Wall Mount Controller with 10' Repeater Cable
- CM170 Indoor Controller with EZ Mount Z-Bracket and Occupancy Sensor
- CM171 Indoor Controller with EZ Mount L-Bracket and 10' Repeater Cable
- CM2iQ Internal CoolerMiser

SnackMiser® - for snack vending machines

- SM150 Indoor Wall Mount Controller with Occupancy Sensor
- SM151 Indoor Wall Mount Controller with 10' Repeater Cable
- SM170 Indoor Controller with EZ Mount Z-Bracket and Occupancy Sensor
- SM171 Indoor Controller with EZ Mount L-Bracket and 10' Repeater Cable

PlugMiser™- for most major electrical equipment

- PM150 Indoor Wall Mount Controller with Occupancy Sensor
- PM151 Indoor Wall Mount Controller with 10' Repeater Cable
- PM190 Indoor Controller with Leg Mount and Occupancy Sensor

Visit www.energymisers.com for more information.

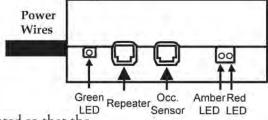
VendingMiser®

VM150 / VM151 Installation Instructions

VendingMiser® is designed to operate as an intelligent power controller for cold product vending machines. Note that VendingMiser may <u>not</u> be used on any vending machine which contains perishable products.

General Theory of Operation

Using a Passive Infrared (PIR) occupancy sensor, VendingMiser will automatically shut down the controlled vending machine when the area around it has been vacant for 15 minutes. However, VendingMiser will periodically re-power the machine automatically to ensure that the vended product stays cold. In addition, VendingMiser contains a current sensor which determines if the vending machine's compressor is operating, and will delay power-down of the vending machine until the compressor has completed its cooling cycle.


To install the VendingMiser, follow these simple steps:

Locating and Mounting the VendingMiser

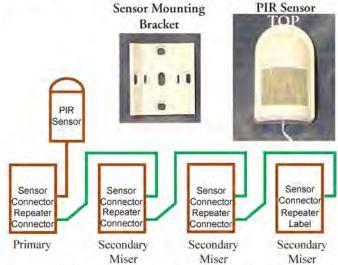
- Unplug the vending machine's power cord from the outlet. If it is necessary to move the machine, be careful as it can be heavy. Note-Each vending machine should remain on the same outlet/circuit breaker at the end of installation.
- 2. Identify a suitable mounting location for VendingMiser, most likely on the wall behind the vending machine. VendingMiser must be located so that the machine's power cord can reach VendingMiser, and VendingMiser's power cord can reach the power outlet.
- VendingMiser should be oriented so that the operational lights are viewable by maintenance personnel.
- 4. Using screws appropriate for the wall material, attach VendingMiser's steel mounting bracket to the identified location with the UP arrow facing towards the ceiling. "Snap" the VendingMiser DOWNWARDS onto the mounting bracket. (To remove VendingMiser later, "Snap" the unit UPWARDS.)
- Plug the vending machine's power cord into the VendingMiser. Do not yet plug the VendingMiser into the wall outlet at this stage of the installation.

Occupancy Sensor or Sensor Repeater Installation

- 6. If the controlled vending machine is a single unit, or the first in a bank of machines, a PIR sensor must be installed as described below to create a Primary VendingMiser. If this VendingMiser is not the first bank unit, skip to Step 10 to install a Secondary VendingMiser.
- 7. The PIR sensor must be located so it can "See" anyone approaching the vending machine. Ideally, the sensor should be mounted on the wall behind the vending machine, about two feet above the machine. Note the picture on reverse side of this document ensure that the TOP of the sensor is facing the ceiling. If low ceiling height above the vending machine does not allow wall mounting, mount on the ceiling in front of the vending machine. This requires that the "TOP" of the sensor points towards the vending machine to ensure proper operation. Always avoid sensor placement near air ducts which can falsely trigger the sensor.

VendingMiser®

VM150 / VM151 Installation Instructions (cont'd.)


8. To mount the sensor, use the supplied plastic mounting bracket shown below. Use appropriate fasteners to secure it to the selected surface. Then snap the sensor over the bracket. To remove the sensor at a later date, snap the sensor off the bracket by pulling the sensor straight out.

Sensor Mounting

PIR Sensor

 The occupancy sensor cable has a telephone style connector at its end. Plug this connector into the center socket on the VendingMiser. The sensor cable should be secured to the wall or ceiling by covering it with plastic low voltage wire raceway.

10. If a Secondary VendingMiser is being installed, use the supplied 3 Meter (10 feet) phone style cable to connect the OCCUPANCY SENSOR connector on this VendingMiser to the REPEATER connector on the Primary VendingMiser. Only remove the yellow label coving the REPEATER connector on the previous unit in the chain. Additional Secondary Vending-Misers can be daisy-chained using the same techniques

shown in the diagram to the right. A maximum of four Misers can be daisy-chained in this fashion. It is acceptable to mix VendingMisers with SnackMisers, PlugMisers, and/or CoolerMisers provided the sensor coverage is acceptable for all devices sharing the sensor.

Power-Up Testing and Install Validation

Plug the VendingMiser into the wall outlet. The following should occur:

- · The vending machine should power up immediately.
- The Green LED should flash twice to indicate that the temperature sensor is functional.
- The Amber LED should then come on as the VendingMiser attempts to synchronize with the compressor's
 operation. This typically will require that the compressor cycle on and off.
- The Red LED should come on, indicating occupancy detection.

The PIR sensor must be allowed to stabilize for several minutes before its placement can be verified. Once the sensor is warmed up, it will flash at the slightest movement within its field of view. Validate that the sensor can "See" an occupant at, or approaching, the vending machine. If necessary, relocate the sensor and repeat the coverage test. The Red LED on the VendingMiser will mirror the state of the PIR sensor, with an additional 3 second delay. This verifies that VendingMiser is communicating with the PIR sensor.

As a final functional test, the VendingMiser will power-down the <u>first time only</u> after installation approximately <u>two minutes</u> after the area around the machine is vacant and the compressor is determined to be not running. Covering the PIR sensor or temporarily setting it to face the wall will allow validation of the power-down operation if so desired. Following this initial power-down, the VendingMiser will operate with standard time-outs.

NOTE: The VendingMiser will <u>flash all three LEDs simultaneously and light a RED LED in the PIR sensor</u> if the vending machine has failed and will not shut down its compressor after several hours of use. Since this prohibits the VendingMiser from shutting down the machine, please call the machine owner service line for machine service.

Copyright © 1997-2008 Revision 12-2008 Part #23020 Printed in the U.S.A.

Manufacturer Specification Sheets

ECM 12: Walk-in Refrigeration Controls

Investment Grade Audit

This page is intentionally left blank.

National Resource Management DATA SHEET

Integrated Refrigeration Controls

Evaporator fans operate 25%-80% less, saving electricity and reducing compressor run time. In areas with winter temperatures, the compressor and fans can also utilize cold, outside air to run less.

Door and Frame Heater Control

Heaters are controlled based on store dew point, reducing run times by up to 95% in coolers and 50% in freezers.

Cooler Load/Shutdown Button

Safely shuts off the refrigeration when the cooler is being stocked, which lessens the risk of damage to the system and lowers the energy costs during loading.

Service Bypass Button

Allows users and technicians to bypass the control system to service the cooler or freezer and then safely reset the system when finished.

Alarm/Reset Button

Strobe lights, as well as optional alert-to-device notifications, signal when pre-determined high or low temperature limits are exceeded. This helps reduce, and in some cases, even eliminate product spoilage and loss.

CoolTrol®

CCS2

Smart Defrost

Defrost cycles are based on coil temperature and refrigeration run time instead of timed cycling for unparalleled optimization.

Built-in Intelligence

The CoolTrol system logs and provides historical usage patterns, which extends the life of the equipment by exposing potential problematic refrigeration areas.

Novelty Cooler Shutoff

Safely and automatically shuts off novelty (Coke/Pepsi/Sports Drinks) and non-perishable product coolers when the store is closed.

Additional Features

- Simplified display and push-button control panel gives you more adjustment options and greater flexibility.
- Built-in Ethernet port offers easier connection to local network for existing EMS or to monitor and control system over CoolTrol LAN Portal.
- Ability to access NRM's Remote Site Manager, a web-based control system.
- Log data and user settings are stored on a removable 8GB SD card - ideal for M+V or compliance reporting.

NRM's CoolTrol® CCS2 cooler and freezer control system is an energy-enhancing solution that optimizes the performance of your refrigeration's components through integrated controls and sensors. See a reduction of up to 50% of the energy used by your equipment and recapture that wasted energy as profit.

■Visit: www.nrminc.com

Call: 800.377.5439

Address: 480 Neponset St., Building 2, Canton, MA 02021

Email: sales@nrminc.com

Manufacturer Specification Sheets

ECM 13: Steam Trap Replacements

Investment Grade Audit

This page is intentionally left blank.

Float & Thermostatic Steam Traps Series TUN Double Inlet / Outlet

Operation

Tunstall Corporation produces a full line of Float & Thermostatic Steam Traps containing a float valve mechanism which modulates to discharge condensate continuously, while non-condensable gases are released by a separate internal balanced pressure thermostatic air vent (The Tunstall Capsule®).

The "H" pattern body on all ¾", 1", 1-1/4" & 1-1/2" (15, 30, 75 & 125 psig) has been designed to offer maximum installation flexibility.

All Tunstall Series TUN float & thermostatic traps can be serviced without disturbing system piping.

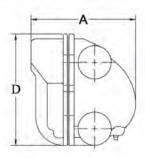
Features

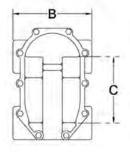
- · Variety of piping connections.
- Stainless steel balanced pressure thermostatic air vent (Tunstall Capsule®).
- Stainless steel internal components
- Wide selection ³/₄"-1-1/2" @ 15, 30, 75 & 125 psig differential pressures.
- Designed to withstand water hammer & high load demands.
- Designed for In-line repair.

Construction

Tunstall float and thermostatic traps feature all stainless steel interiors, heavy duty trap housings, easy access to internal parts and convenient piping connections.

Materials of Cor	struction
Body & Cover	Cast Iron-ASTMA 126CI B
Valve Head	Stainless Steel
Valve Seat	Stainless Steel
Valve Seat Gasket	Non-Asbestos
Float	Stainless Steel
Bracket & Lever Assembly	Stainless Steel
Thermostatic Air Vent	Tunstall Capsule® Stainless Steel
Cover Bolts	Carbon Steel Grade 5
Cover Gasket	Non-Asbestos


Float & Thermostatic Steam Traps - Series TUN


Engineering Specifications

Capacities lbs. Condens	ur		Differential Pressure (PSI)														
Model	Size NPT	PSIG Orifice	1/4	1/2	1	2	5	10	15	20	25	30	40	50	75	100	125
TUN-215	3/4"	,313	600	825	1000	1225	1575	1875	2175		1						
TUN-415	1"	.313	600	825	1000	1225	1575	1875	2175								
TUN-515	1-1/4"	.344	750	1000	1200	1400	1900	2300	2700								
TUN-715	1-1/2"	.391	980	1365	1855	2410	3150	3750	4075								
TUN-230	3/4"	.250	425	600	750	900	1250	1500	1725	1900	2050	2300	10.71		16.01		
TUN-430	1"	.250	425	600	750	900	1250	1500	1725	1900	2050	2300	100				
TUN-530	1-1/4"	.313	600	825	1000	1225	1575	1875	2175	2500	2750	3000					
TUN-730	1-1/2"	.391	800	1100	1450	1800	2400	2900	3400	3750	4050	4300		. 1	11.4		
TUN-275	3/4"	.141	300	375	425	500	625	725	825	900	975	1000	1200	1350	1650		
TUN-475	1"	.141	300	375	425	500	625	725	825	900	975	1000	1200	1350	1650		
TUN-575	1-1/4"	.188	375	500	600	710	935	1050	1225	1375	1525	1675	1825	1950	2400		-
TUN-775	1-1/2"	.219	400	525	675	825	1075	1250	1425	1575	1725	1850	2000	2200	2700		
TUN-2125	3/4"	.109	275	310	350	390	450	500	540	600	660	725	850	1000	1280	1500	1650
TUN-4125	1"	.109	275	310	350	390	450	500	540	600	660	725	850	1000	1280	1500	1650
TUN-5125	1-1/4"	.141	300	375	425	525	625	725	825	900	975	1100	1200	1350	1650	1900	2100
TUN-7125	1-1/2"	.172	350	450	550	650	800	950	1050	1150	1275	1400	1500	1625	1950	2275	2500

Capacities in lbs of condensate per hour according to ASME.

All 3/4", 1", 1-1/4" & 1-1/2"

34.3.1	6:	DIN	IENSIC	NS (In	ches)	Weight	Daniel IVII
Model	Size	A	В	C	D	(lbs.)	Repair Kit
TUN-215	3/4"	5.75	4.875	3.375	5.6875	12	TUN-1FP-DB-215
TUN-415	1"	5.75	4.875	3.375	5.6875	12	TUN-2FP-DB-415
TUN-515	1-1/4"	6.375	5.375	3.00	5.75	17	TUN-3FP-DB-515
TUN-715	1-1/2"	6.375	5.375	3.00	5.75	17	TUN-4RK-DB-715
TUN-230	3/4"	5.75	4.875	3.375	5.6875	12	TUN-IFP-DB-230
TUN-430	1"	5.75	4.875	3.375	5.6875	12	TUN-2FP-DB-430
TUN-530	1-1/4"	6.375	5.375	3.00	5.75	17	TUN-3FP-DB-530
TUN-730	1-1/2"	6.375	5.375	3.00	5.75	17	TUN-4RK-DB-730
TUN-275	3/4"	5.75	4.875	3.375	5.6875	12	TUN-IFP-DB-275
TUN-475	1"	5.75	4.875	3.375	5.6875	12	TUN-2FP-DB-475
TUN-575	1-1/4"	6.375	5.375	3.00	5.75	17	TUN-3RK-DB-575
TUN-775	1-1/2"	6.375	5.375	3.00	5.75	17	TUN-4RK-DB-775
TUN-2125	3/4"	5.75	4.875	3.375	5.6875	12	TUN-1FP-DB-2125
TUN-4125	1"	5.75	4.875	3.375	5.6875	12	TUN-2FP-DB-4125
TUN-5125	1-1/4"	6.375	5.375	3.00	5.75	17	TUN-3RK-DB-5125
TUN-7125	1-1/2"	6.375	5.375	3.00	5.75	17	TUN-4RK-DB-7125

Float & Thermostatic Traps

Tunstall Steam Trap Capsules®

Submittal Data

Project:

Engineer:

Contractor:

Representative/Supplier:

Post & Spring Style

Thread Type

Installation Tool

Features:

- 100% Stainless Steel Thermostatic Capsule, TIG Welded Construction
- Stainless Steel Spring (If Required)
- · Stainless Steel Seat
- Stainless Steel Bellows
- EPDM Gasket Rated to 300°F (Saturated Steam)
- 24 Month Warranty

Specifications

Spring Type

For low pressure steam radiator traps vacuum to 45 psig. Stainless steel bellows with corrosion resistant stainless steel plug and seat. All parts calibrated inside a heavy duty stainless steel capsule (housing) with a stainless steel spring inserted on a stainless steel post at the top of capsule (housing). The seat projection to be unthreaded to facilitate easy installation where the orifice in the trap body has no threads.

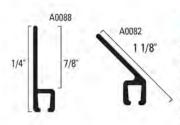
Thread Type

For low pressure steam radiator traps vacuum to 45 psig. Stainless steel bellows with corrosion resistant stainless steel plug and seat. All parts calibrated inside a heavy duty stainless steel capsule (housing). The seat projection to be threaded to facilitate easy installation where the orifice in the trap body is threaded. TC Tool to be provided for ease of installation.

Manufacturer Specification Sheets

ECM 14: Infiltration Reductions

Investment Grade Audit

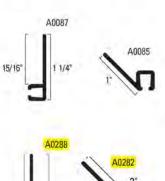

This page is intentionally left blank.

MATERIAL LIST - BUILDING ENVELOPE MEASURES

Task	Manufacturer Product	Material Description
Attic Access Hatch (Retrofit, Install)	Dow/ Thermax Sheathing	polyisocyanurate rigid board insulation
	Plywood/ CDX plywood/ Lumber	standard plywood (no Data Sheet included)
	Visco Products/ DXL1000 Door Weather Stripping	aluminum extrusion with Q-Lon soft cell foam insert
Attic Bypass Air Sealing	Dow/ Froth-Pak Foam Insulation	2-part spray polyurethane foam
	Dow/ Great Stuff Pro Gaps and Cracks	1-part polyurethane foam sealant
	Dow/Thermax Sheathing	polyisocyanurate rigid board insulation
Attic Insulation	Cellpak Cellulose/Cellpak Cellulose Insulation Supreme	cellulose insulation - void of ammonium sulfate
	National Fiber/ Cel-Pak Cellulose Insulation	cellulose insulation - void of ammonium sulfate
Buck Frame Sealing	Dow/ Great Stuff Pro Gaps and Cracks	1-part polyurethane foam sealant
	DuPont/ Airtite Siliconized Acrylic Caulk	siliconized acrylic latex caulk
	J&K Foam Fabricating Inc./ Standard Backer Rod	closed-cell low-density polyethylene foam backer rod
	Sascho/ Big Stretch	elastomeric sealant
Caulking (Exterior, Interior)	DuPont/ Airtite Siliconized Acrylic Caulk	siliconized acrylic latex caulk
	J&K Foam Fabricating Inc./ Standard Backer Rod	closed-cell low-density polyethylene foam backer rod
	Sascho/ Big Stretch	elastomeric sealant
Door Weather Stripping	C.R. Lawarence/Vangaurd Astragal Replacement	pile weatherstrip insert
soor weather surpping	Schlegel Systems (Visco)/ PF-102 Polyflex Weatherseal	surface mount weather strip
	Schlegel Systems (Visco)/ PF-114 Polyflex Weatherseal	surface mount weather strip
	Schlegel Systems (Visco)/ PF-512 Polyflex Weatherseal	surface mount weather strip
	Visco Products/ FS325 Door Weather Stripping	aluminum extrusion with wool pile brush/ fin insert
	Visco Products/ FS300 Door Weather Stripping	aluminum extrusion with wool pile brush/ fin insert
	Visco Products/ TS100 Door Triple Sweep	aluminum extrusion with 3/4" vinyl insert
	Visco Products/ DXL1000 Door Weather Stripping	aluminum extrusion with Q-Lon soft cell foam insert
	Visco Products/ DXL320 Door Weather Stripping	aluminum extrusion with Q-Lon soft cell foam insert
Garage Door Weather Stripping	Action Industries/ Standard Aluminum Retainers - A0288	aluminum retainers for weather strip
mage Boot Weatter Bulphing	Action Industries/ Standard Aluminum Retainers - A0282	aluminum retainers for weather strip
	Action Industries/ Standard Rubber - V0036-00-W, V0056-00-W	rubber weather strip inserts/ seals
	Action Industries/ Standard Brush Seals - B07772-RI-W	brush weather strip inserts/ seals
	Action Industries/ Aluminum Bottom Seal Retainers - A2020	aluminum retainers for bottom weather strip
	Action Industries/ Bottom Rubber Seals - T2564-00-W	rubber weather strip inserts/ seals
	Action Industries/ Standard Rolling Steel Guide Seal - PL035-00-W	rigid and flexible vinyl roll-up door clip-on weather strip
Overhang Air Sealing	Convenience Products/ Touch 'n Seal All Seasons	1-part polyurethane foam sealant
3.111.00	Dow/ Froth-Pak Foam Insulation	2-part spray polyurethane foam
	Dow/ Great Stuff Pro Gaps and Cracks	1-part polyurethane foam sealant
	Dow/ Thermax Sheathing	polyisocyanurate rigid board insulation
	DuPont/ Airtite Siliconized Acrylic Caulk	siliconized acrylic latex caulk
	Sascho/ Big Stretch	elastomerie sealant
Roof-Wall Intersection Air Sealing	Convenience Products/ Touch 'n Seal All Seasons	1-part polyurethane foam sealant
	Dow/ Froth-Pak Foam Insulation	2-part spray polyurethane foam
	Dow/ Great Stuff Pro Gaps and Cracks	1-part polyurethane foam sealant
	Dow/ Thermax Sheathing	polyisocyanurate rigid board insulation
	DuPont/ Airtite Siliconized Acrylic Caulk	siliconized acrylic latex caulk
	Sascho/ Big Stretch	elastomeric sealant
Window Weatherization	Schlegel Systems (Visco)/ PF-102 Polyflex Weatherseal	surface mount weather strip
The state of the s	Schlegel Systems (Visco)/ PF-114 Polyflex Weatherseal	surface mount weather strip
	Demogra of mental () theo/ 1 t - 1 i T T Olytica mediticiscal	Survey Industry Teacher Study

Note: Product Data Sheets are included in this Submittal Report in alphabetical order by the company name of the material manufacturer.

STANDARD SEALS

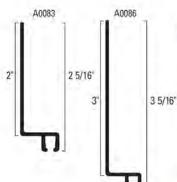


STANDARD ALUMINUM RETAINERS

COLOR

Made of high-strength aluminum ore and designed to hold any $\frac{1}{2}$ " to 3" standard brush, rubber or vinyl seal (see pages 3, 4 & 5). Custom fabrication and secondary options include punching and assembly.

STANDARD MILL LENGTHS: 8'-2", 9'-2", 10'-2", 12'-4", 14'-4", 16'-4", 18'-4" STANDARD BROWN & WHITE LENGTHS: 16'-4", 18'-4"




17/8

2 1/8"

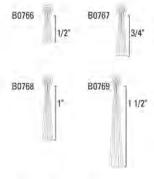
PART NUMBER

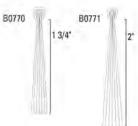
STANDARD ROLLING STEEL GUIDE SEAL

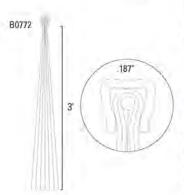
White

Mill

Designed to clip onto guides up to 1/4" thick. Compatible with standard brush, rubber and vinyl seals (see pages 3, 4 & 5).

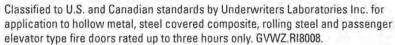

STANDARD LENGTHS: 8'-2", 9'-2", 10'-2", 12'-4", 14'-4", 16'-4", 18'-4"

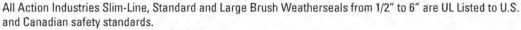

PART NUMBER	COLOR
PL035-00-W	Gray


3" OFFSET

A0083-WH-W

A0086-MI-W


STANDARD & ZEBRA BRUSH SEALS

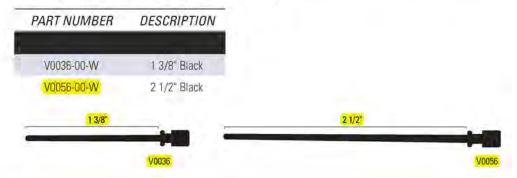

Both our Standard and Zebra Brush™ Seals are made of versatile and long-lasting filaments that will not hold water or freeze at sub-zero temperatures. Bristles are wrapped around a steel rod to prevent "pull-out." Standard Brush Seals fit all Standard Aluminum Retainers (see page 2) or Standard Rolling Steel Clip-On Retainers (see page 21). STANDARD LENGTHS: 6′, 7′, 8′, 9′, 10′.

PART NUMBER	BRISTLE
STANDARD BRU	ISH SEAL
B0766-00-W	1/2"
B0767-00-W	3/4"
B0768-00-W	1"
B0769-00-W	1 1/2"
B0770-00-W	1 3/4"
B0771-00-W	2"
B0772-00-W	3"
ZEBRA BRUSH	I SEAL*
B0768-ZB-W	1"
B0771-ZB-W	2"
B0772-ZB-W	3"

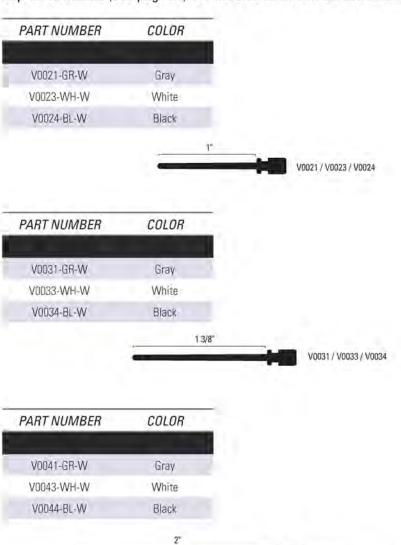
^{*}Colors are alternating yellow and black filament for high visibility.

GASKETING MATERIALS FOR FIRE DOORS

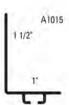
Softening Point: 240°F, Melting Point: 320°F


Action Industries' new standard weatherblock weatherseal ensures a secure seal and barrier against smoke, air infiltration and extreme weather. A single durable EPDM rubber insert provides an excellent seal. Fits all Standard Aluminum Retainers (see page 2). Standard Lengths: 8', 10'.

PART NUMBER	DESCRIPTION	
	BRUSH WEATHERSEAL	- 1
B0766-RI-W	Standard 1/2" Brush	
B0767-RI-W	Standard 3/4" Brush	
B0768-RI-W	Standard 1" Brush	
B0769-RI-W	Standard 1 1/2" Brush	
B0770-RI-W	Standard 1 3/4" Brush	
B0771-RI-W	Standard 2" Brush	
B0772-RI-W	Standard 3" Brush	


STANDARD RUBBER SEALS

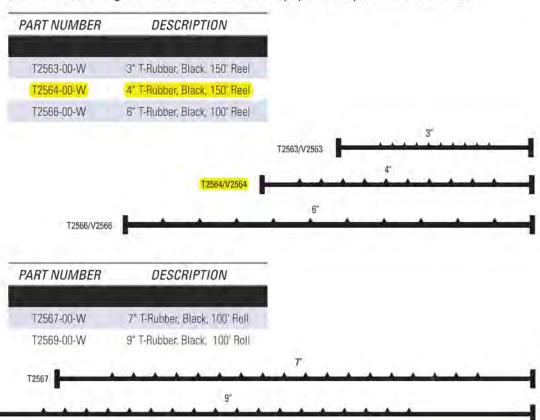
Designed for applications where extreme temperature changes (-50° – 350°F) may occur. Designed to fit in our Standard Aluminum Retainers (see page 2) or Standard Rolling Steel Clip-On Retainers (see page 21). AVAILABLE IN ROLLS OR INSTALLED.


STANDARD VINYL SEALS

These seals possess excellent memory for shape retention under various conditions at a reasonable cost. Designed to fit in our Standard Aluminum Retainers (see page 2) or Standard Rolling Steel Clip-On Retainers (see page 21). AVAILABLE IN ROLLS OR INSTALLED.

V0041 / V0043 / V0044

BOTTOM SEALS


ALUMINUM BOTTOM SEAL RETAINERS

Longer-lasting, versatile retainer that will accept 1/4" T-Style rubber, vinyl or bulb seals from names 13 - 17

	PART NUMBER	DESCRIPTION		
	A1015-01-W	1" x 1 1/2" L-Shaped		
153	A1250-00-W	1 1/4" Flat		
1 1/4"	A1315-01-W	1 3/8" x 1 1/2" L-Shaped		
	A1330-01-W	1 3/8" x 3" U-Shaped		
A1315	A1330-02-W	1 3/8" x 3" L-Shaped		
M1313	A1700-00-W	1 5/8" Flat		
	A1703-00-W	1 5/8" L-Shaped		
1 3/8"	A1818-01-W	1 3/4" x 1 3/4" L-Shaped		
1 []	A1830-01-W	1 3/4" x 3" U-Shaped		
	A2000-TG-W	2" Tongue & Groove Panel		
	A2010-01-W	2"x 1" L-Shaped		
330	A2020-01-W	2"x 2" L-Shaped		
	A2030-01-W	2" x 3" U-Shaped		
	A2040-01-W	2" x 2" U-Shaped		
	A2050-01-W	2" x 1 5/8" T-Shaped		
3/8"	2"	A2020	A2030	2" A
1 5/8"	2	3"		2*
1 5/8"	۲٦		2	
,				A2050
A1818		830		.975"
	3"	A2000		C3

BOTTOM "T" RUBBER SEALS

Made of durable, black EPDM synthetic rubber, excellent in extreme temperature conditions $(-50^{\circ} - 350^{\circ}F)$. Designed with a 1/4" "T" to fit the popular T-style bottom retainers.

BOTTOM "T" VINYL SEALS

T2569

This high-quality vinyl astragal series provides an economical option for your bottom seal needs. The material is specially engineered for better performance at low temperatures, and the universal 1/4" "T" construction fits almost any retainer.

3" T-Vinyl, Black, 200' Reel
3" T-Vinyl, Gray, 200' Reel
DESCRIPTION
4" T-Vinyl, Black, 200' Reel
4" T-Vinyl, Gray, 200' Reel
4" T-Vinyl, Yellow, 200' Ree
DESCRIPTION
6" T-Vinyl, Black, 200' Reel
6" T-Vinyl, Gray, 200' Reel

TECH DATA SHEET

1. PRODUCT NAME

Touch 'n Seal All Seasons Gun Foam Sealant 24 ounce (680 gm) Item # 4004529812

2. MANUFACTURER

FAX

Convenience Products 866 Horan Dr., Fenton, MO 63026 USA

> (636) 349-5855 (800) 325-6180 (636) 349-5335

E-mail support@touch-n-seal.com Website: www.touch-n-seal.com

3. PRODUCT DESCRIPTION

Touch 'n Seal All Seasons onecomponent, moisture curing polyurethane foam sealant is uniquely formulated to perform under difficult low temperature conditions where traditional polyurethane foam sealants fail to cure. All Seasons Gun Foam cures at temperatures as low as 20°F (-7°C) and as high as 120°F (49°C). All Seasons Gun Foam meets the insulating and air sealing requirements of professional commercial, industrial, agricultural and residential contractors who must work in extreme temperatures. All Seasons Gun Foam is non-toxic, fireretardant, non-shrinking and permanently fills and seals cracks and gaps.

Basic Use

Use Touch 'n Seal All Seasons Gun Foam when an application must be made during extreme low or high temperatures. All Seasons Gun Foam seals cracks and gaps up to ½ inch (12mm) wide, providing a permanent insulating and air sealing solution to most building component materials, including: wood, concrete, insulating foam boards, metal, plastics and sheetrock.

The Touch 'n Seal All Seasons Gun Foam protects against both vapor migration and energy robbing air infiltration, helps to improve indoor air quality and provides superior insulation performance.

Composition & Materials
Touch 'n Seal All Seasons Gun Foam is
permanent and dries within minutes of
application.

Sizes

All Seasons Gun Foam – Item # 4004529812 - 24 ounce (680 gm)

Benefits

- Use in temperatures as low as 20°F (-7°C) and as high as 120°F (49°C)
- Provides a permanent seal against air, moisture and insect infiltration
- Permanent installation; does not shrink or settle as do many caulk type sealants
- Compatible with all fiber insulation systems including cellulose, fiberglass and rockwool
- Bonds to common building materials, including: wood, concrete, insulating foam boards, metal, plastics and sheetrock
- Expands to fill gaps up to ½" (12mm) wide reducing air exchanges
- Reduces energy loss by as much as 40%
- Reduces use of fossil fuels and improves air quality
- · No Ozone Depleting Chemicals
- Helps to reduce Greenhouse Gas Emissions
- · Closed cell structure
- Allows for down sized HVAC systems; uses less energy, fewer cycle times, more consistent "comfort level", reduces equipment maintenance
- Outperforms fiberglass
- · Fire retardant

Limitations

- Do not expose to temperatures above 250°F (121°C), open flames or sparks.
- · Not for exposure to ultraviolet light.
- Chemicals must be 60°F (16°C) 90°F (32°C) prior to dispensing.
- Do not store in temperatures above 120°F.
- Always refer to local building code regulations.
- Do not leave product exposed cover with approved facings.
- Flammable propellant. Read MSDS and do not use near high heat, sparks or open flame.

4. TECHNICAL DATA

Applicable Standards

- ASTM E84 Surface Burning Characteristics
- ASTM C518 R-Value
- ASTM D1622 Density
- ASTM D2856 Closed Cell Content

Approvals/Certifications

- · International Building Code
- · International Residential Code
- BOCA National Building Code
- 1999 Standard Building Code
- 1997 Standard Building Code
- ICC-Evaluation Services

Physical/Chemical Properties
See Table. Test data available upon request.

Shelf Life

12 months in unopened container when stored between 60°-90°F (16°-32°C), in a dry, well ventilated area.

Storage & Disposal

Keep containers tightly closed in a cool, well ventilated area. Ideal storage temperature is 60°-90°F (16°-32°C). Storage above 90°F (32°C) will reduce shelf life. Do not store at temperatures above 120°F (49°C). Do not expose containers to conditions that may damage, puncture, or burst the containers. Dispose of leftover material/containers in accordance with Federal, state and local regulations. See Material Safety Data Sheet for more information.

5. INSTALLATION/APPLICATION

Always refer to local building codes prior to application of Touch 'n Seal foam.

The Touch 'n Seal All Seasons Gun Foam can be applied to and will adhere to almost any traditional construction surfaces, including: wood, concrete, polystyrene, gypsum board, fiberboard, masonry and metal.

Surfaces to receive Touch 'n Seal All Seasons Gun Foam must be dry, clean and free of dust, dirt, grease and other substances that may inhibit proper adhesion. Fill application area about 1/3 full, leaving room for foam to expand.

CH DATA SH

For best results apply Touch 'n Seal All Seasons Gun Foam when surface and ambient temperatures are between 60°-90°F (16°-32°C). Touch 'n Seal All Seasons 6. Availability & Cost Gun Foam may be applied to ambient and surface temperatures as low as 20°F (-7°C) and as high as 120°F (49°C). Chemical contents must be between 70°- 90°F (21°-32°C) before dispensing

Use all chemical contents within 30 days of initial dispensing. Clean uncured foam from applicator tools with Touch 'n Seal Poly-Clean.

Keep out of reach of children.

Always wear proper personal protective equipment, including gloves, clothing and eyewear. Use in well ventilated area.

See material safety data sheet for additional workmanship and function. warnings and information.

Please refer to manufacturers' instructions or request a faxed set of instructions from

Convenience Products by calling Customer Service at 800-325-6180.

Availability

Touch 'n Seal polyurethane foams are available throughout the U.S., Canada, Mexico and the world. Contact Convenience 8. Maintenance Products Customer Service at 800-325-6180 or FAX 636-349-1708 for distributor information.

Cost

Contact Convenience Products for local distributors who can provide cost and delivery information.

7. Warranty

Convenience Products warrants All Seasons Gun Foam to be free of defects in

Convenience Products is not liable for any incidental, consequential or any other damages or remedies. There are no

Warranties that extend beyond the description herein, however, certain states have specific laws regarding limitation on incidental or consequential damages, in which case, and you may have other legal rights.

None.

9. Technical Services

Technical assistance, including more detailed information, product literature, test results, assistance with preparing project specifications and application training is available by contacting Convenience Products Customer Service.

10. Filing Systems

Additional information is available from the manufacturer upon request.

TYPICAL PROPERTIES OF TOUCH 'N SEAL ALL SEASONS GUN FOAM

Shelf Life	1 year; unopened container
Dry time/Tack Free Time	10 minutes
Fully Cured	Approximately 1 hour
Cuttable	30 minutes
ASTM E84 Surface Burning Characteristics Flame Spread Smoke Development	5 10
ASTM C518 R-Value	7.12 /in.
ASTM C1536 Yield for Aerosol Foam Sealants	2,200 ft (670m) @ 1/4" (6mm)
ASTM D1622 Density	1.9 ± .10 pcf
International Building Code	Conforms
International Residential Code	Conforms
BOCA National Building Code	Conforms
1999 Standard Building Code	Conforms
1997 Standard Building Code	Conforms
ICC-ES	Listed ESR 1926

CLICK HERE TO VIEW

MORE CHOICES

Customer Menu Bar 🖄 Catalog Library Not a CRL Customer? Searching on CRL

CRL Web Library Products by Industry Products & Services 🖄 Architectural Metal Systems Architectural Railing Systems Architectural Customers Automotive Products

Blumcraft Display Systems Door & Window Hardware Drafting & Design Services Glass and Glazing Glass Machinery Hand Held and Power Tools Hospitality and Service Hardware Interior Office Partitions Key Control Specialists

Monterey Post Systems Product Finishes/Galleries Shower Doors

TAPER-LOC® System Transaction Hardware UV Glass Bonding General Information (8)

About CRL Bulletin Board Business Policies Catalog Library Engineering Reports Hand Rails Online Trial Instructions/Literature Projects Showers Online Trial Storefronts Online Trial UPS Package Tracking User's Guide Video Librar

Online Applications Login

Hand Rails Online
Hand Rails Online Metric Showers Online Showers Online Metric Storefronts Online Storefronts Online Metric

News & Events 🖎 Careers @CRL e-News Press Releases Technical Articles Trade Shows Trade Associations Webinars What's New

Catalog Number: W562B

Stops Air, Water, and Dust from Infiltrating the Joint Between Pairs of Doors

Designed to Replace Worn Pile Weatherstrips on U.S. Aluminum Doors with Vanguard Security Astragals

Resists Mold. Mildew. and Corrosion

This CRL Pile Weatherstrip is installed by simply sliding it into the pile channel of the existing U.S. Aluminum Vanguard Security Astragal frame. The polypropylene black fiber pile resists mold, mildew, and corrosion, and has exceptional resistance to abrasion, It is silicone treated to repel water, and stabilized against ultraviolet and ozone. The backing strip is polypropylene and lasts longer than plastic weatherseals.

CRL Vanguard Security Astragal Replacement Pile Weatherstrip - 1500' Bulk Roll

Other Products/Finishes:

CATALOG NUMBER DESCRIPTION

CRL Vanguard Security Astragal W562B Replacement Pile Weatherstrip -

1500' Bulk Roll

CRL .625" Vanguard Security Astragal Replacement Pile

Weatherstrip

More Details:

Catalog Number W562B

Also Available

W562C

CRL83R Door and Window Replacement, PAGE 651W

Catalogs:

CRL93G Doors and Windows, PAGE DW143

Bulk Roll Length:

Can Ship UPS Ship Via:

Additional Product Information:

No additional product information available at this time.

1500' (457.2 m)

Most shipping weights are approximate and have not been verified. If the exact weight is needed in order to determine shipping costs, and shipping costs are required in order for you to complete your order, please request this prior to submitting your order by contacting <u>CRL Customer Service</u>. Product images shown are of the actual product or a close representation. Colors can vary depending on your computer's video card and on how your monitor's color is adjusted.

Related Items:

No related items.

FROTH-PAK" FOAM INSULATION

1. PRODUCT NAME

FROTH-PAK™ Foam Insulation

2. MANUFACTURER

The Dow Chemical Company Dow Building Solutions 200 Larkin Midland, MI 48674 1-866-583-BLUE (2583) Fax 1-989-832-1465

www.dowbuildingsolutions.com

3. PRODUCT DESCRIPTION

BASIC USE

FROTH-PAK™ Foam Insulation is a two-component, quick-cure polyurethane foam that fills cavities, penetrations, cracks and expansion joints. Unlike one-component foam, FROTH-PAK™ Foam Insulation is a chemically cured foam, significantly reducing curing time.

FROTH-PAKTM Foam Insulation dispenses, expands and becomes tack-free in seconds. The product will skin over in 30-40 seconds and will be completely cured in minutes.*

The Class-A rating (flame spread of 25 or less) of FROTH-PAK™ Foam Insulation allows its use in a wide range of interior and exterior industrial, commercial, institutional and residential settings. Check with local codes prior to use. If used in an exterior setting, a coating must be applied for ultraviolet (UV) protection.

SIZES

FROTH-PAK™ Foam Insulation is typically sold as a complete 42 lb (FROTH-PAK™ 200) portable kit that includes pressurized "A" and "B" cylinders, plus dispensing gun/hose assembly and accessories. FROTH-PAK™ Foam Insulation is also available in refillable, returnable cylinders for commercial applications requiring a large amount of foam. See Table 1 for yield and size information.

4. TECHNICAL DATA

APPLICABLE STANDARDS

ASTM International

- C203 Standard Test Methods for Breaking Load and Flexural Properties of Block-Type Thermal Insulation
- C273 Standard Test Method for Shear Properties of Sandwich Core Materials
- C518 Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus
- D1621 Standard Test Method for Compressive Properties of Rigid Cellular Plastics
- D1622 Standard Test Method for Apparent Density of Rigid Cellular Plastics
- D1623 Standard Test Method for Tensile and Tensile Adhesion Properties of Rigid Cellular Plastics
- D2842 Standard Test Method for Water Absorption of Rigid Cellular Plastics
- E96 Standard Test Methods for Water Vapor Transmission of Materials
- E283 Standard Test Method for Determining Rate of Air Leakage Through Exterior Windows, Curtain Walls and Doors Under Specified Pressure Differences Across the Specimen
- E2178 Standard Test Method for Air Permeance of Building Materials

PHYSICAL PROPERTIES

FROTH-PAK™ Foam Insulation exhibits the typical properties and characteristics indicated in Table 2 when tested as represented.

FIRE PROTECTION

Cured FROTH-PAK™ foam is combustible and will burn if exposed to open flame or sparks from high-energy sources. Do not expose to temperatures above 240°F.

CODE COMPLIANCES

FROTH-PAK™ Foam Insulation complies with the following codes:

- Underwriters Laboratories, Inc. (UL) Classified, see Classification Certificate R7813
- National Fire Protection
 Association per NFPA 286
 testing, can be left exposed in non-fire-resistant rated roof/wall junctures, maximum 6" high and 2" deep (unlimited width)

Contact your Dow sales representative or local authorities for state and local building code requirements and related acceptances.

5. INSTALLATION

Complete operating instructions are provided with each FROTH-PAK™ Foam Insulation purchase. Read all information and cautions before application. Note: Avoid overfilling restricted spaces. Chemicals exert force during reaction, and expansion of foam may result in substrate deformation.

TABLE 1: SIZES AND THEORETICAL YIELDS FOR FROTH-PAK $^{\mathsf{TM}}$ FOAM INSULATION

PRODUCT	THEORETICAL YIELD(1), BOARD FT	
Kits		
FROTH-PAK™ 200	200	
FROTH-PAK™ 620	620	
Refillable Cylinders (commercial use)		
FROTH-PAK™ 17 (gal)	2,060	
FROTH-PAK™ 60 (gal)	6,860	
FROTH-PAK™ 120 (gal)	15,430	
FROTH-PAK™ 350 (gal)	43,890	

⁽¹⁾ The theoretical yield has become an industry standard for identifying certain sizes of two-component kits. Theoretical yield calculations are performed in perfect laboratory conditions, without taking into account the loss of blowing agent or the variations in application methods and types.

SAFETY AND CONDITIONS OF USE

- Read the instructions and Material Safety Data Sheets carefully before use.
- FROTH-PAK™ spray polyurethane foam contains isocyanate, hydrofluorocarbon blowing agent and polyol. Do not breathe vapor or mist. Use only in well-ventilated areas or with proper respiratory protection. Supplied air or an approved air-purifying respirator equipped with an organic vapor sorbent and a P100 particulate filter may be required to maintain exposure levels below

ACGIH, OSHA, WEEL or other applicable limits. For situations where the atmospheric levels may exceed the level for which an air-purifying respirator is effective, use a positive-pressure, air-supplying respirator (air line or self-contained breathing apparatus).

- Isocyanate is irritating to the eyes, skin and respiratory system, and may cause sensitization by inhalation or skin contact.
- FROTH-PAK[™] foam will adhere to most surfaces and skin. Do not get foam on skin. Wear protective clothing (including long sleeves),

Page 14

gloves, and goggles or safety glasses. Cured foam must be mechanically removed or allowed to wear off in time.

- · The contents are under pressure.
- FROTH-PAK™ foam should not be used around heaters, furnaces, fireplaces, recessed lighting fixtures or other applications where the foam may come in contact with heat-conducting surfaces. Cured FROTH-PAK™ foam is combustible and will burn if exposed to open flame or sparks from high-energy sources. Do not expose to temperatures above 240°F.

Visit www.dowbuildingsolutions.com or contact a local Dow representative for more specific instructions.

TABLE 2: TYPICAL PHYSICAL PROPERTIES OF FROTH-PAK™ FOAM INSULATION

PROPERTY AND TEST METHOD	VALUE
Flame Spread/Smoke Developed(1)(2), ASTM E84/UL 723	25/350
Nominal Density, ASTM D1622, lb/ft ³	1.75
Thermal Resistance ⁽³⁾ per inch, ASTM C518, ft²•h•°F/Btu, R-value, min. Initial Aged 90 days at 140°F	6.6 5.6
Air Leakage, ASTM E283, cfm/ft² @ 1.57 psf ASTM E2178, L/s/m² @ 75 Pa	0
Water Vapor Permeance, ASTM E96 perm @ 1" thick perm @ 2" thick	3.9 2.0
Water Absorption, ASTM D2842, % by volume	2.17
Dimensional Stability, ASTM D2126, % volume change 100°F/100% RH @ 1wk 100°F/100% RH @ 2wks	4.6 5.0
158°F/100% RH @ 1wk 158°F/100% RH @ 2wks	6,5 5.1
-40°F/amb RH @ 1wk -40°F/amb RH @ 2wks	0.9
158°F/amb RH @ 1wk 158°F/amb RH @ 2wks	3.1 2.3
Compressive Strength, ASTM D1621, lb/in², parallel	21.1
Flexural Strength, ASTM C203, lb/in², parallel	22.7
Tensile Strength, ASTM D1623, lb/in², parallel	26.7
Shear Strength, ASTM C273, lb/in², parallel	16.7
Maximum Service Temperature, °F	240
AN Tree of the William Street College	

- (1) Tested at 2" thickness, full coverage.
- (2) This numerical flame spread rating is not intended to reflect hazards presented by this or any other material under actual fire conditions.
- (3) R means resistance to heat flow. The higher the R-value, the greater the insulating power,

6. AVAILABILITY

FROTH-PAK™ Foam Insulation is distributed through an extensive network. For more information, call 1-800-232-2436.

7. WARRANTY

Not applicable.

8. MAINTENANCE

Not applicable.

9. TECHNICAL SERVICES

Dow can provide technical information to help address questions when using FROTH-PAK™ Foam Insulation. Technical personnel are available to assist with any insulation project. For technical assistance, call 1-866-583-BLUE (2583).

10. FILING SYSTEMS

- www.dowbuildingsolutions.com
- www.sweets.com

www.dowbuildingsolutions.com

Technical Information 1-866-583-BLUE (2583) Sales Information 1-800-232-2436 THE DOW CHEMICAL COMPANY 200 Larkin Midland, MI 48674

NOTICE: No freedom from any patent owned by Dow or others is to be inferred. Because use conditions and applicable laws may differ from one location to another and may change with time, Customer is responsible for determining whether products and the information in this document are appropriate for Customer's use and for ensuring that Customer's workplace and disposal practices are in compliance with applicable laws and other or exactments. The product shown in this literature may not be available for sale and/or available in all geographies where Dow is represented. The claims made may not have been approved for use in all countries or regions. Dow assumes no obligation or liability for the information in this document. References to "Dow" or the "Company" mean the Dow legal entity selling the products to Customer unless otherwise expressly noted. NO EXPRESS WARRANTIES ARE GIVEN EXCEPT FOR ANY APPLICABLE WRITTEN WARRANTIES SPECIFICALLY PROVIDED BY DOW. ALL IMPLIED WARRANTIES INCLUDING THOSE OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.

Dow Polyurethane Foam Insulation and Sealants

CAUTION: When cured, these products are combustible and will burn if exposed to open flame or sparks from high-energy sources. Do not expose to temperatures above 240%. For more information, consult MSDS, call Dow at 1-866-583-BLUE (2583) or contact your local building inspector. In an emergency, call 1-989-636-4400.

FROTH-PAKIM spray polyurethane foam contains isocyanate, hydrofluorocarbon blowing agent and polyol. Read the instructions and Material Safety Data Sheets carefully before use. Wear protective clothing (including long sleeves), gloves, goggles or safety glasses, and proper respiratory protection. Supplied air or an approved air-purifying respirator equipped with an organic vapor sorbent and a P100 particulate filter may be required to maintain exposure levels below ACGIH. OSHA, WEEL or other applicable limits, Provide adequate ventilation. Contents under pressure.

Building and/or construction practices unrelated to building materials could greatly affect moisture and the potential for mold formation. No material supplier including Dow can give assurance that mold will not develop in any specific system.

GREAT STUFF PRO™ Gaps & Cracks Insulating Foam Sealant

1. PRODUCT NAME

GREAT STUFF PRO™ Gaps & Cracks Insulating Foam Sealant

2. MANUFACTURER

The Dow Chemical Company Dow Building Solutions 200 Larkin Midland, MI 48674 1-866-583-BLUE (2583) Fax 1-989-832-1465

Dow Chemical Canada ULC Dow Building Solutions 450 = 1st St. SW, Suite 2100 Calgary, AB T2P 5H1 1-866-583-BLUE (2583) (English) 1-800-363-6210 (French)

www.dowbuildingsolutions.com

3. PRODUCT DESCRIPTION

GREAT STUFF PRO™ Gaps & Cracks Insulating Foam Sealant is a minimalexpanding, single component polyurethane foam sealant for general purpose building envelope air sealing.

In the United States, the sealant is easily identified by its bright orange color. It has led the way in the industry by being recognized as a fireblock, which means it resists the free passage of flames to other areas of the building through concealed spaces.

Basic Use

GREAT STUFF PRO™ Gaps & Cracks Insulating Foam Sealant fills and seals gaps up to 3" (75 mm).* GREAT STUFF PRO™ Gaps & Cracks Insulating Foam Sealant:

- expands to take the shape of cracks and voids, forming an airtight and waterresistant bond to wood, metal, masonry, glass and most plastics
- · reduces pathways where insects can enter
- installs in minutes (tack-free in 5-10 minutes**, trims within 60 minutes)

GREAT STUFF PRO™ Gaps & Cracks Insulating Foam Sealant is both costeffective and effective as an air sealant.

Sizes

GREAT STUFF PRO" Gaps & Cracks Insulating Foam Sealant is available in 24 oz (680 g) and 30 oz (850 g) gun- and reusable straw-applied versions.

Accessories

Using one of several PRO Series foam dispensing guns simplifies the application of GREAT STUFF PRO™ Gaps & Cracks. In addition to enabling pinpoint application control, an airtight and moisture tight seal between the gun and the can prevents the foam from curing and blocking the dispensing valve, allowing a can to be reused up to one month later.

GREAT STUFF PRO™ Gun Cleaner is a solution to simplify cleanup of uncured polyurethane foam from dispensing guns and work areas. Cured foam must be mechanically removed or allowed to wear off in time.

4. TECHNICAL DATA Applicable Standards

GREAT STUFF PRO™ Gaps & Cracks Insulating Foam Sealant meets the following standards:

- ASTM E84 Standard Test Method for Surface Burning Characteristics of Building Materials
- ASTM E814 (modified) Standard Test Method for Fire Tests of Through-Penetration Fire Stops
- CAN/ULC S102 Method of Test for Surface Burning Characteristics of Building Materials and Assemblies

Code Compliances

GREAT STUFF PRO™ Gaps & Cracks complies with Underwriters Laboratories, Inc. (UL) Classification, Classified as a sealant: see UL R13655.

Evaluation Reports

- ICC-ES ESR-1961 (US only)
- · CCMC R13074 (CAN only)

Contact your Dow sales representative or local authorities for state/provincial and local building code requirements and related acceptances.

Physical Properties

GREAT STUFF PRO™ Gaps & Cracks is a polyurethane-based foam with a minimal-expansion formulation. It cures quickly and has a moisture-resistant skin. GREAT STUFF PRO™ Gaps & Cracks Insulating Foam Sealant exhibits the typical properties indicated in Table 1 when tested as represented.

5. INSTALLATION

GREAT STUFF PRO™ Gaps & Cracks
Insulating Foam Sealant is easy to use.
Complete installation instructions
are provided on each can. Application
surface should be free of dust and dirt.
Damp surfaces will not impair the
bond. PRO Series foam dispensing guns
provide clean and precise dispensing
with professional results.

Safety And Conditions Of Use

- Read all instructions and (Material) Safety Data Sheet ((M)SDS).
- GREAT STUFF PRO Gaps & Cracks
 Insulating Foam Sealant contains
 isocyanate and a flammable blowing
 agent. Vapors may travel to other
 rooms. Ensure adequate ventilation
 and shut off all pilot lights and
 open flames; eliminate all sources
 of ignition before use. Do not smoke
 or use lighters or matches while
 dispensing foam.
- Do not breathe vapor or mist. Use in well-ventilated areas or wear proper respiratory protection. Isocyanate is irritating to the eyes, skin and respiratory system, and may cause sensitization by inhalation or skin contact.

®™Trademark of The Dow Chemical Company ("Dow") or an affiliated company of Dow

^{*}For cavities, cracks and penetrations larger than 3" (75 mm), Dow recommends FROTH-PAK™ Foam Sealant or FROTH-PAK™ Foam Insulation (US only). For window and door framework, minimal-expanding GREAT STUFF PRO™ Window & Door Insulating Foam Sealant is proven not to distort or bow the framework, when properly applied.

- GREAT STUFF PRO" foam is very sticky and will adhere to most surfaces and skin. Do not get foam on skin. Cover all skin, wear long sleeves, gloves, and goggles or safety glasses. Cured foam must be mechanically removed or allowed to wear off in time.
- The contents are under pressure. Not to be used for filling closed cavities or voids such as behind walls and under tub surrounds. The can may burst if left in areas susceptible to high temperatures, such as motor vehicles, or near radiators, stoves or other sources of heat. Do not place can in hot water. Do not puncture, incinerate or store at temperatures above 120°F (49°C).
- GREAT STUFF PRO™ foam should not be used around heaters, furnaces, fireplaces, recessed lighting fixtures or other applications where the foam may come in contact with heat-conducting surfaces. GREAT STUFF PRO™ foam is combustible and will burn if exposed to open flame or sparks from high-energy sources. Do not expose to temperatures above 240°F (116°C).

Visit www.dowbuildingsolutions. com or contact a local Dow representative for more specific instructions.

6. AVAILABILITY

GREAT STUFF PRO™ Gaps & Cracks Insulating Foam Sealant is distributed through an extensive network. For more information, call: 1-800-232-2436 (English) 1-800-565-1255 (French)

TABLE 1: Typical Physical Properties¹ Of GREAT STUFF PRO™ Gap & Cracks Insulating Foam Sealant

Property and Test Method	Value
Flexural Strength, ASTM C203, parallel to rise, psi (kPa), min.	8.8 (60.7)
K-factor (Thermal Resistance) per inch (25mm), ASTM C518 @75°F (24°C) mean temp., Btu•in/ft2•hr•°F (W/m•°C), min.	0.26 (0.037)
Compressive Strength, ASTM D1621, parallel to rise, psi (kPa)	9.3 (64.1)
Apparent Core Density, ASTM D1622, pcf (kg/m3)	1.01 (16)
Dimensional Stability, ASTM D2126, % volume change 100°F/100%RH@2wks -40°F/ambRH@2wks	14.31 0.41
Closed Cell Content, ASTM D2856, %	80
Tensile Strength, ASTM D1623, parallel to rise, psi (kPa)	14.4 (99.3)

^{&#}x27;Not to be considered sales specifications

7. WARRANTY

Not applicable.

8. MAINTENANCE

GREAT STUFF PRO™ Gaps & Cracks
Insulating Foam Sealant has a shelf life
of 12 months when stored at 75°F (24°C).
Contents of the can are under pressure.
Can may burst if left in areas susceptible
to high temperatures, such as motor
vehicles, or near radiators, stoves or other
sources of heat. Do not place can in hot
water. Do not puncture, incinerate or
store at temperatures above 120°F (49°C).

9. TECHNICAL SERVICES

Dow can provide technical information to help address questions when using GREAT STUFF PRO® Gaps & Cracks Insulating Foam Sealant. For technical assistance, call: 1-866-583-BLUE (2583) (English) 1-800-363-6210 (French)

10. FILING SYSTEMS

www.dowbuildingsolutions.com

In the United States

The Dow Chemical Company Dow Building Solutions

200 Larkin Center Midland, MI 48674 In Canada

Dow Chemical Canada ULC Dow Building Solutions 450 – 1st St. SW

450 – 1st St. SW Suite 2100 Calgary, AB T2P 5H1 For Technical Information:

1-866-583-BLUE (2583) (English)

1-800-363-6210 (French)

For Sales Information:

1-800-232-2436 (English)

1-800-565-1255 (French)

NOTICE: No freedom from infringement of any patent owned by Dow or others is to be inferred. Because use conditions and applicable laws may differ from one location to another and may change with fime, Customer's responsible for determining whether products and the information in this document are appropriate for Customer's use and for ensuring that Customer's workplace and disposal practices are in compilance with applicable laws and other government enactments. The product shown in this literature may not be available for sale and/or available in all geographies where Dow is represented. The claims made may not have been approved for use in all countries or regions. Dow assumes no obligation or liability for the information in this document. References to "Dow" or the "Company" mean the Dow legal entity selling the products to Customer unless otherwise expressly noted. NO EXPRESS WARRANTIES ARE GIVEN EXCEPT FOR ANY APPLICABLE WRITTEN WARRANTIES SPECIFICALLY PROVIDED BY DOW. ALL IMPLIED WARRANTIES INCLUDING THOSE OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.

Dow Polyurethane Foam Insulation and Sealants

CAUTION: When cured, these products are combustible and will burn if exposed to open flame or sparks from high-energy sources. Do not expose to temperatures above 240°F (116°C). For more information, consult (Material) Safety Data Sheet (MSDS), call Dow at 1-866-583-BLUE (2583) or contact your local building inspector. In an emergency, call 1-989-636-4400 in the U.S. or 1-519-339-3711 in Canada. When air sealing buildings, ensure that combustion appliances, such as furnaces, water heaters, wood burning stoves, gas stoves and gas dryers are properly vented to the outside. See website: http://www.epa.gov/iaq/homes/hip-ventilation.html. In Canada visit http://archive.nrc-cnrc.gc.ca/eng/ibp/inc/bsi/83-house-ventilation.html.

GREAT STUFF PRO™ Insulating Foam Sealants contain isocyanate and a flammable blowing agent. Read all instructions and (Material) Safety Data Sheet ((M)SDS) carefully before use, Eliminate all sources of ignition before use. Cover all skin. Wear long sleeves, gloves, and goggles or safety glasses. Provide adequate ventilation or wear proper respiratory protection. Contents under pressure. Not to be used for filling closed cavities or voids such as behind walls and under tub surrounds.

GREAT STUFF PRO™ Gun Cleaner is flammable and contains acetone and propane. Read all instructions and (M)SDS carefully before use. Eliminate all sources of ignition before use. Cover all skin. Wear gloves, and goggles or safety glasses. Provide adequate ventilation or wear proper respiratory protection. Contents under pressure.

Building and/or construction practices unrelated to building materials could greatly affect moisture and the potential for mold formation. No material supplier including Dow can give assurance that mold will not develop in any specific system.

Printed in the U.S.A. Form No. 179-07323-0515 CDP 178-00752-0515 CDP CDP 56398

dowbuildingsolutions.com

THERMAX™ SHEATHING

1. PRODUCT NAME

THERMAX™ Sheathing

2. MANUFACTURER

The Dow Chemical Company Dow Building Solutions 200 Larkin Midland, MI 48674 1-866-583-BLUE (2583) Fax 1-989-832-1465

www.dowbuildingsolutions.com

3. PRODUCT DESCRIPTION

THERMAX™ Sheathing is a nonstructural, rigid board insulation consisting of a glass-fiber-infused polyisocyanurate foam core laminated between 1.0 mil smooth, reflective aluminum facers on both sides. The glass-fiber reinforcement contributes to improved fire performance and dimensional stability. THERMAX™ Sheathing can be installed exposed to the interior without a thermal barrier.

THERMAX™ Sheathing offers high, long-term R-value. Used in conjunction with the appropriate joint closure system for the application, THERMAX™ Sheathing with its low perm rating helps to reduce moisture condensation within and behind the insulation.

BASIC USE

THERMAX™ Sheathing is specially designed to have a Class A fire rating and can be used in a range of concealed and exposed applications, above and below grade, and can be used in exterior walls. Because of its improved fire performance, THERMAX™ Sheathing is especially appropriate for hourly rated assemblies. THERMAX™ Sheathing is approved for use, per Section 2603.5 of the International Building Code, in Exterior Walls of Types I,II,III and IV construction. THERMAX™ Sheathing is designed for use as continuous insulation in both interior and exterior applications to assist in meeting and exceeding both the most current IECC and the ASHRAE 90.1 energy standards. Maximum length is 30 ft. (9.1 m) and maximum thickness is 4.25" (108 mm).

4. TECHNICAL DATA

APPLICABLE STANDARDS

THERMAX™ Sheathing meets ASTM C1289 – Standard Specification for Faced Rigid Cellular Polyisocyanurate Thermal Insulation Board, Type I, Class 2. Applicable standards include:

- C203 Standard Test Methods for Breaking Load and Flexural Properties of Block-Type Thermal Insulation
- C209 Standard Test Methods for Cellulosic Fiber Insulating Board
- C518 Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus
- D1621 Standard Test Method for Compressive Properties of Rigid Cellular Plastics
- D2126 Standard Test Method for Response of Rigid Cellular Plastics to Thermal and Humid Aging
- E96 Standard Test Method for Water Vapor Transmission of Materials
- D1623 Standard Test Method for Tensile and Tensile Adhesion Properties of Rigid Cellular Plastics

TYPICAL PHYSICAL PROPERTIES

THERMAX™ Sheathing exhibits the typical physical properties and characteristics indicated in Table 2 when tested as represented.

ENVIRONMENTAL DATA

THERMAX™ Sheathing is manufactured with a zero ozone depleting potential. The use of THERMAX™ Sheathing helps reduce the carbon footprint of commercial buildings.

FIRE INFORMATION

THERMAX™ Sheathing products should be used only in strict accordance with product application instructions. THERMAX™ products are combustible and when used in a building containing combustible materials, may contribute to the spread of fire. For more information, consult MSDS and/or call Dow

at 1-866-583-BLUE (2583). In an emergency, call 1-989-636-4400.

CODE COMPLIANCES

THERMAX™ Sheathing complies with the following codes:

- ASTM E2178 Standard Test Method for Air Permeance of Building Materials - leakage rates less than 0.001 L/s/m² at a test pressure of 75 Pa.
- ASTM E283 Standard Test Method for Determining Rate of Air Leakage through Exterior Windows, Curtain Walls, and Doors under specified Pressure differences across the specimen. Results were <0.02 L/s/m²
- ASTM E2357 Standard Test Method for Determining Air Leakage of Air Barrier Assemblies
 no leakage
- ASTM E331 Standard Test Method for Water Penetration of Exterior Windows, Skylights, Doors, and Curtain Walls by Uniform Static Air Pressure Difference - no leakage
- 2009 International Residential Code (IRC) Section 316
- 2009 International Building Code (IBC) Section 2603
- ICC-ES ESR-1659
- FM 4880 Wall-Ceiling Construction Metal-Faced – Class 1 Fire Rated to Max. 30' Exposure High, 4.25" Thick, 4' Wide, When Installed as Described in the Current Edition of FMRC Approval Guide
- FM 4450 Approval Standard for Class 1 Insulated - Steel Deck Roofs
- THERMAX™ products are covered under Underwriters Laboratories Inc. (UL) File R5622
- UL 1256 Fire Test of Roof Deck Constructions, Roof Deck Construction No. 120 and No. 123
- UL 723 (ASTM E84) Surface Burning Characteristics of Building Materials
- The following designs are 1, 2, 3 or 4 hour wall rated assemblies as listed in the UL Fire Resistance Directory: U026, U326, U330, U354, U355, U424, U425, U460, U902, U904, U905, U906, U907, V454, V482, V499

- Fire Performance Evaluation of an Exterior Masonry Wall System Incorporating THERMAX™ Insulation Tested in Accordance With NFPA 285, 2006 Edition (UBC 26.9, intermediate scale – multistory testing)
- FMVSS No. 302 Flammability of Interior Materials – Passenger Cars, Multipurpose Passenger Vehicles, Trucks and Buses (Docket No. 3-3; Notice 4)
- Miami-Dade NOA 08-0320.01 Interior Insulation on CMU Block

Contact your Dow sales representative or local authorities for state and local building code requirements and related acceptances.

5. INSTALLATION

Boards of THERMAX™ Sheathing are lightweight and can be sawed or cut with a knife. They install quickly to walls (girts, steel stud, tilt-up, block, wood) and ceilings – inside and outside of purlins, trusses or bar joints. Butt joints must be installed over structural members. "Best

TABLE 1: SIZES, R-VALUES AND EDGE TREATMENTS FOR THERMAX $^{\mathsf{TM}}$ SHEATHING

NOMINAL BOARD THICKNESS(1), IN.	R-VALUE(2)(5)	BOARD SIZE, FT	EDGE TREATMENT
.50	3.3	4 x 8, 4 x 9, 4 x 10	Square Edge
.75	5.0	4 x 8, 4 x 9, 4 x 10	Square Edge
1.0	6.5	4 x 8, 4 x 9, 4 x 10	Square Edge
1.5	9.8	4 x 8, 4 x 9, 4 x 10	Square Edge, Shiplap
2.0	13.0	4 x 8, 4 x 9, 4 x 10	Square Edge, Shiplap

- (1) Contact your Dow seller for information at different R-values and other sizes and lead time requirements. Not all product sizes are available in all regions.
- (2) R means resistance to heat flow. The higher the R-value, the greater the insulating power. Stabilized R-values ® 75°F mean temperature determined in accordance with ASTM C518. R-values expressed in ft^{*} h °F/Btu.
- (3) An additional 2.77 R-value may be added to the system R-value, when a minimum 3/4" ideal air space and horizontal heat flow are present in accordance with the ASHRAE Fundamentals Handbook on FTC, 16 CFR Part 460.

TABLE 2: TYPICAL PHYSICAL PROPERTIES OF THERMAX™ SHEATHING

PROPERTY AND TEST METHOD	VALUE
Compressive Strength ⁽¹⁾ , ASTM D1621, psi, min.	25
Flexural Strength, ASTM C203, psi, min.	40
Water Absorption, ASTM C209, % by volume, max.	0.1
Water Vapor Permeance, ASTM E96, perm, max.	< 0.03
Maximum Use Temperature, °F	250
the second secon	ON THE STATE OF TH

(1) Vertical compressive strength is measured at 10 percent deformation or at yield, whichever occurs first.

Page 18
practice" recommendations for
high-humidity environments include
continuously sealing the surface of
the insulation at all joints with a Dow
joint closure system.
Contact a local Dow representative
or access the literature library at
www.dowbuildingsolutions.com for
more specific instructions.

6. AVAILABILITY

THERMAX™ Sheathing is manufactured in several locations and is distributed through an extensive network. For more information, call 1-800-232-2436.

7. WARRANTY

Fifteen-year limited warranty is available. Contact your Dow representative for details.

8. MAINTENANCE

Not applicable.

9. TECHNICAL SERVICES

Dow can provide technical information to help address questions when using THERMAX™ Sheathing. Technical personnel are available to assist with any insulation project. For technical assistance, call 1-866-583-BLUE (2583).

10. FILING SYSTEMS

- www.dowbuildingsolutions.com
- www.DowMetalBuilding.com

www.dowbuildingsolutions.com www.thermaxbydow.com Technical Information 1-866-583-BLUE (2583) Sales Information 1-800-232-2436 IN THE U.S.
THE DOW CHEMICAL COMPANY
200 Larkin
Midland, MI 48674

NOTICE: No freedom from any patent owned by Dow or others is to be inferred. Because use conditions and applicable laws may differ from one location to another and may change with time, Customer is responsible for determining whether products, and the information in this document are appropriate for Customer's use and for ensuring that Customer's workplace and disposal practices are in compliance with applicable laws and other government enactments. The product shown in this literature may not be available for sale and/or available in all geographies where Dow is represented. The claims made may not have been approved for use in all countries or regions. Dow assumes no obligation or liability for the information in this document. References to "Dow" or the "Company" mean the Dow legal entity selling the products to Customer unless otherwise expressly noted. NO EXPRESS WARRANTIES ARE GIVEN EXCEPT FOR ANY APPLICABLE WRITTEN WARRANTIES SPECIFICALLY PROVIDED BY DOW, ALL IMPLIED WARRANTIES INCLUDING THOSE OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY EXCLUDED.

CAUTION: This product is combustible and shall only be used as specified by the local building code with respect to flame spread classification and to the use of a suitable thermal barrier. For more information, consult MSDS, call Dow at 1-866-583-BLUE (2583) or contact your local building inspector. In an emergency, call 1-989-636-4400.

WARNING: Rigid foam insulation does not constitute a working walkable surface or qualify as a fall protection product.

Building and/or construction practices unrelated to building materials could greatly affect moisture and the potential for mold formation. No material supplier including Dow can give assurance that mold will not develop in any specific system.

DuPont Home Global [change]

Our Company Science Sustainability Investor Center Media Center Career Center

Search DuPont

The miracles of science

DuPont[™] Caulk

DuPont™ Caulk Home

Pick Your Sealing Project

Kitchen & Bath

Windows, Doors & Siding Sealant

DuPont™ Paintable Premier Silicone

DuPont™ Window & Door Premier Silicone

DuPont™ Window & Door Choice Silicone

DuPont™ Window, Doors, & Siding Silicone w/ Kevlar®

DuPont™ Painters Caulk w/ Speed Dry™ Technology

DuPont™ AIRTITE® Siliconized Acrylic Caulk

Aluminum & Metal

Driveway & Roofing

Concrete & Masonry

Paintable Caulk

About our Products

Using Our Products

Where to Buy

Customer Care

Contact Us

Print This Page

DuPont™ AIRTITE® Siliconized Acrylic Caulk with Weather-Tight Seal technology

DuPont™ AIRTITE® Siliconized Acrylic Caulk with Weather-Tight Seal technology is ideal for sealing gaps around windows, doors, trim, and a variety of other interior and exterior surfaces. With this new technology, DuPont™ AIRTITE® Siliconized Acrylic Caulk forms a weather-tight seal that has been tested by accepted standards for adhesion, low temperature flexibility, extension/recovery, and weathering. Reduce air leaks in your home and increase energy efficiency by caulking or sealing with an acrylic sealant.

DuPont™ AIRTITE® Siliconized Acrylic Caulk can help eliminate air infiltration into a home when used around doors and windows. The Department of Energy - ENERGY STAR® Home Sealing guidelines and the NAHB Green Home Building Guidelines recommend the use of caulk to increase the energy efficiency of a home. Using DuPont™ Caulk may also help contribute towards U.S. Green Building Council's LEED® (Leadership in Energy and Environmental Design) points.

DuPont™ AIRTITE® Siliconized Acrylic Caulk with Weather-Tight Seal technology comes in both a convenient squeeze tube and cartridge, which requires a caulk gun for application.

For interior and exterior acrylic sealant, choose the name that has brought you quality products for more than 200 years - DuPont.

Product Features:

- Exceeds ASTM C-834, Grade -18° C
- 40-year guarantee
- Interior / Exterior
- · Paintable
- · Water-resistant seal
- · Airtight seal
- · VOC less than 1.5%
- · Cured bead is mildew resistant

Available colors and packaging:

 10.1 oz. cartridges & 5.5 oz. squeeze tubes available in: White and Clear Is Your Home Energy Efficient?

Air-seal your home with DuPont™ AIRTITE® Siliconized Acrylic Caulk to increase energy efficiency and comfort. Download the ENERGY STAR® Do-It-Yourself Guide to get started.

** Download Now

DuPont™ AIRTITE® Siliconized Acrylic Caulk

DuPont™ AIRTITE® Siliconized Acrylic Caulk with Weather-Tight Seal technology is now available at Lowe's Home Improvement Stores nationwide and online.

» Buy Now!

DuPont™ Residential Sealant

Testing Standards:

- * ASTM C-834, Type OP, Grade -18'C, White
- . ASTM C-834, Type C, Grade O°C, Clear

Adheres to:

- Concrete
- * Wood
- · Metal
- · Marble
- · Glass
- * Porcelain
- · Ceramic tile
- Masonry

FAQ | Site Map | Legal Notices & Terms of Use | PRIVACY

Copyright © 2012 DuPont or its affiliates. All rights reserved. The DuPont Oval Logo, DuPont™, The miracles of science™ and all products denoted with ® or ™ are registered trademarks or trademarks of E. I. du Pont de Nemours and Company or its affiliates.

BACKER ROD

Basic Use:

Standard Backer Rod is an ideal non absorbent compressible backup material inserted into a joint to control sealant depth, creating a backstop to allow proper sealant tooling. It can also be used as a temporary joint seal.

Specific Uses:

Commonly used in glazing operation, window and door applications, expansion joints, curtain wall joints, partitions, log construction, pavement joints, and repair, precast units and copings.

Compatibility:

Standard Backer Rod is compatible with butyl, polysulfide, acrylic, polyurethane, silicone and most other cold sealants.

Composition and Material:

Standard Backer Rod is an extruded round, closed cell, low density polyethylene foam material with skin-like outer texture. It is highly flexible and compressible for easy installation.

Chemical Resistance:

Standard Backer Rod meets a wide range of chemical resistance. Please call for specific applications and conditions.

Installation:

Joint or opening must be kept clean, dry and free of obstructions. Select proper rod diameter and cut to length or use directly from spool. With a blunt instrument or roller, uniformly install rod at the level recommended by the sealant manufacturer, specifier or architect involved. Generally the depth of the joint after the Backer Rod is installed is one half the width. Very large and very small joints vary in terms of this depth to width ratio.

(Do not puncture, Stretch, or overly Compress)

Tech Data and Physical Properties

Density	1.5 PCF	ASTM-D-1622
Deflection	4 PSI @ 25%	ASTM-D-1621
Water Absorption	0.02% by vol.	ASTM-C-1016
Temperature Range	-45° F to 160° F	ASTM-C-1330
Out gassing	>1	ASTM-C-1253
Compression Recovery	% min. >90%	ASTM-D-5243
Tensile Strength	24 PSI	ASTM-D-1623

Meets ASTM-D-5249 Type III

Joint Width	Rod Size	Joint Width	Rod Size
3/16"	1/4"	1"	1 1/4"
1/4"	3/8"	1 1/8"	1 ½"
3/8"	1/2"	1 5/8"	2"
1/2"	5/8"	2"	2 ½"
5/8"	3/4"	2 ½"	3"
3/4"	7/8"	3 ½"	4"
7/8"	1"		

66 Robinson Street Pottstown, PA • 19464

Ph: (484) 624-4547 • Fax: (484) 624-4548 • Toll Free: 1-877-823-1059

Big Stretch.

Won't Crack. . . It Just Stretches

DESCRIPTION:

Big Stretch® is a high-performance water-based elastomeric sealant with powerful adhesion and superior elasticity. It spans gaps up to 2" wide and stretches up to 500% of original joint size without cracking. Big Stretch won't crack...it just stretches.

WHERE TO USE:

Interior and exterior applications, including:

- Windows
- · Doors
- Siding

· Steel

Fiberglass

Polycarbonate

· Cinder Block

· Hot melt Butyl

· Fiber Cement

Formica®*

Concrete

- Vents
- · Soffits Baseboards
- · Crown Moulding Eaves
- · Sound-proofing interior walls

ADHERES TO: (all conform to ASTM C794) Most building materials including:

Metals

- Aluminum
- · Brass
- Anodized Windows

Plastics

- · ABS
- Lexan®* Acrylic Sheet
- · PVC Plexiglass Urethane Vinyl
- Nylon Polystyrene
- Other Surfaces
- Asphalt · Tile · Corian®* Wood
- · Glass Mortar Brick
- Stucco · Stone · EIFS
- Drywall

- COLORS:
- · White
- Redwood
- Woodtone
- · Dark Brown
- · Pine Green
- Limestone
- Almond
- · Tan
- · Gray · Clear
- · Black
- Ironstone
- · Slate Gray

Visit www.sashco.com for a color compatibility chart that matches Big Stretch colors to various vinyl window manufacturers' colors.

PACKAGING:

- · 10.5 oz. plastic cartridges
- · 29 oz. fiber cartridges (white only)

COVERAGE:

A 10.5 oz. cartridge will yield approx. 26 lineal feet with a 1/4" (6 mm) bead.

PAINTABILITY:

Paintable with exterior latex paints/stains after 4 hours and interior latex paints/stains after 24-48 hours (more for humid conditions). Paintable with most exterior oil-based paints/stains after 1 week. Note: some lowend, flat latex paints may crack, regardless of cure time.

* Corian®, Lexan®, and Formica® are registered trademarks of their respective owners.

FEATURES

- · Super elastic, moves instead of tears
- · Spans gaps up to 2" wide with no slump
- · Powerful adhesion
- High durability
- · Water-based
- · Low VOC
- Superb paintability
- · Freeze-thaw stable
- Limited Lifetime Warranty
- Full 10.5 oz. in every cartridge
- Won't cause paint gloss
- · Exclusive stop flow plunger

BENEFITS

Eliminates costly call backs

Stays where it's applied

Won't tear or pull away

Performs well in most any type of climate

Easy to tool and clean up

Meets strictest VOC requirements; environmentally friendly

Compatible with latex paint and most oil-based paints, sealers and stains

Simply thaw & apply, no wasted product

Have confidence that you're using the right product

More for your money

No more shiny caulk lines

Less waste, less mess

WHERE NOT TO USE:

- Areas of water submersion or frequent, prolonge d puddling
- Areas with high foot and/or vehicletraffic (driveways, sidewalks, decks, patios, etc.)
- Roofs exposed to prolonged dampness (use Sashco's Through the Roof![®] instead)
- Big Stretch Clear should not be used on copper flashing. Colored Big Stretch, Sashco's Lexel® or Sashco's Through the Roof!® are best for this application.
- Will not adhere to or is incompatible with Kynar^{®*}, Polypropylene, Waxes, Polyethylene, and Silicone.

APPLICATION:

- Lower temperatures and higher humidity will slow cure time. Allow 1-3 days curing before exposure to direct rainfall. Use plastic sheeting with good airflow underneath to protect the product if rain is expected sooner.
- Natural shrinkage will give the joint a concave appearance; multiple applications may be needed to fill the joint flat.
- If dirt or oils are present on the substrate, wash with any household cleaner, rinse to remove and allow to thoroughly dry.
- Remove any old caulk, especially silicone and all silicone residue. Use a silicone remover such as McKanica®* Silicone Caulk Remover.
- Insert backer rod into joints deeper than 1/2" to provide for proper sealant depth and a stronger, longer lasting seal.
- Choose bead size and cut the nozzle. Puncture the inner seal.
- · Gun Big Stretch into the joint.
- Tool for a smoother bead using a damp foam or paint brush with a light, skimming touch, or use a beading tool.

STORAGE AND CLEAN-UP:

- Clean up tools and hands with warm water and soap.
- Leftover Big Stretch can be stored if the nozzle is tightly wrapped with plastic wrap and a rubber band.

800-767-5656 · www.sashco.com 10300 E. 107th Pl., Brighton, CO 80601 Made in the USA

TYPICAL PROPERTIES:

PROPERTY	VALUE
Joint Size	Maximum 2"
Application Range	40°F to 120°F (4°C to 49°C) surface temperature
Service Range	-30°F to 250°F (-34°C to 121°C)
Tensile Properties	Recovery at 50% stretch: 100% in 3 minutes Recovery at 100% stretch: 96% in 5 minutes
voc	59.8 g/L < 1.5% by weight

TEST DATA:

PROPERTY	RESULTS	TEST METHOD
Durability	25% total joint movement (10 cycles @ -15°F (-26°C))	ASTM C719
Hardness, Shore A	32 (21-day cure)	ASTM C661
Slump	< 1/8"	ASTM D2202
Solids	83.8% by weight (pigmented) 61.2% by weight (clear)	ASTM C1250
Extrusion Rate	750 g/min (1/8" orifice at 40 psi)	ASTM C603
Freeze-Thaw Stability	Passes 10 cycles 0°F to 70°F (-18°C to 21°C)	ASTM C731
Low Temp. Flexibility	Pass (not artificially weathered)	ASTM C734
Tack-free	Less than 30 minutes	ASTM C679
Cured	4-5 days (dependent on temperature, humidity and bead size)	ASTM C679
Adhesion-in-peel Passing Substrates	See "ADHERES TO" section on front pag	e ASTM C794

SPECIFICATIONS:

- Meets FHA requirements.
- · Meets or exceeds Federal Specification:
 - TT-S-00230 C
- ASTM C834
- ASTM C920, Type S, NS, Class 25, Use NT, M, A. Exceeds 10% weight loss.

The data reported here are believed to be reliable.

No warranty is made concerning the accuracy of or the results obtained from their use.

* Kynar® and McKanica® are registered trademarks of their respective owners.

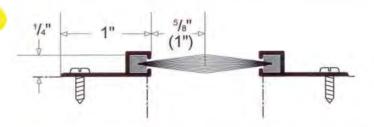
Keep out of reach of children.

Limited Lifetime Warranty: Sashco warrants this product will substantially meet published specifications on the date of sale. If it fails to do so, return unused portion with original sales receipt for replacement or refund, at Sashco's sole option. These are purchaser's sole and exclusive remedies for any breach of warranty. Purchaser must determine suitability of product for purchaser's specific needs and assumes all risk associated with its use. Sashco will not be liable for direct or indirect damages.

Except as stated above there are no warranties for this product. The foregoing express warranty is in lieu of all other warranties, express or implied, including without limitation implied warranties of merchantability or fitness for a particular purpose, which warranties are specifically excluded and disclaimed. This Limited Warranty gives you specific legal rights. You may have other rights which vary from state to state. Some states do not allow exclusion of implied warranties in consumer or other sales, limitations on the duration of implied warranties, or exclusion or limitation of incidental or consequential damages. Thus, the limitations or exclusions contained above may not apply to you depending upon your specific circumstances.

Visit www.sashco.com for information on other Sashco high performance products.

door ASTRAGALS


FS325 - Wool Pile Brush Astragal With Fin

Construction: Extruded Aluminum Insert: .500" or .880" Wool Pile Brush.

Finish: Black

Standard Lengths: 7ft. or 8ft. pieces, 2 piece set.

Custom lengths also available.

door

BOTTOMS & SWEEPS

FS300 - Wool Pile Brush Sweep With Fin

Construction: Extruded Aluminum Insert: .500" or .880" Wool Pile Brush.

Finish: Black

Standard Lengths: 36, 42, 48 inches. Custom lengths also available.

TS100 Door Triple Sweep

Construction: Extruded Aluminum

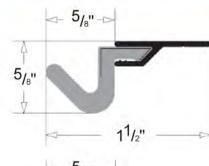
Insert: 3/4" Vinvl Insert

Finish: Black

Lengths: 36", 42", or 48", or by the linear foot

door

WEATHERSTRIPPING

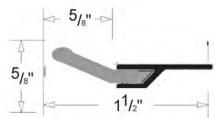

DXL1000 - Door Weatherstripping

Construction Q-Lon: Extruded aluminum. Mitered corners ensure a secure fit with slotted mounting holes for easy adjustment.

Insert: Soft cell foam insert. Foam has thermoplastic cover and will not deteriorate.

Finish: Black

Set: 1-3' piece and 2-7' pieces. Custom lengths also available.



DXL320 - Door Weatherstripping

Construction Q-Lon: Extruded aluminum. Mitered corners ensure a secure fit with slotted mounting holes for easy adjustment.

Insert: Soft cell foam insert. Foam has thermoplastic cover and will not deteriorate.

Finish: Black

Phone: (401) 831-1665 Toll Free: 1-800-628-9680 Fax: (401) 751-2720 Web: www.viscoproduct.com e-mail: info@visco.com

Manufacturer Specification Sheets

ECM 15: Pipe Insulation

Investment Grade Audit

This page is intentionally left blank.

Submittal Sheet

Fiberglas® Pipe Insulation

- □ SSL II® All-Service Jacket (ASJ),
 Self-Sealing Lap
 □ SSL® I ASJ
- ☐ No-Wrap

Description

Owens Corning Fiberglas® pipe insulations are molded of heavy density resin bonded inorganic glass fibers. These one-piece, 36" (914 mm) long, hinged sections are opened, placed over the pipe, closed and secured by means specific to the type as described below.

Fiberglas SSL II® Pipe Insulation is jacketed with a smooth, reinforced, wrinkle-resistant all-service (ASJ) vapor retarder jacket. Factory applied DOUBLESURE† double pressure sensitive adhesive closure provides positive mechanical and vapor sealing of the longitudinal jacket seam. Pressure sensitive butt strip seals complete the positive closure. Available in the most popular sizes.

In larger sizes *Fiberglas* Pipe Insulation is furnished with SSL® I, a single adhesive lap seal.

Fiberglas "No-Wrap" Pipe Insulation is also available without a jacket. It is intended for field installation of jacketing appropriate to the vapor control, damage or corrosion resistance requirements of the application.

Uses

Insulation of hot, cold, concealed and exposed piping operating at temperatures from 0°F (-18°C) to 850°F (454°C) in commercial buildings, industrial facilities and process or power plants.

†DOUBLESURE is a registered trademark of Morgan Adhesives Company.

Features/Benefits

SSL II Positive Closure System

Effective long-term vapor sealing of both longitudinal and butt joints. With double-adhesive lap seal, plus two-part butt strip seal, positive closure is fast, neat and foolproof. No need for staples and mastic, promoting unexcelled jobsite productivity.

Jacket and Lap Shipped Adhered

Short pieces of insulation can be cut without jacket loss; it won't come apart in handling. No "dog-ears" in or out of the carton. Dust and

moisture can't reach the seal. Butt strips come in sealed bags inside the carton, staying clean until the moment of use.

Excellent Thermal Performance

Fiberglas Pipe Insulation's low thermal conductivity contributes to lower operating costs of heating and cooling equipment.

Meets Model Code Fire Ratings

Flame spread rating of 25 or less, and smoke developed rating of 50 or less, usually means that *Fiberglas* Pipe Insulation will be granted immediate building code approval.

Availability

Fiberglas Pipe Insulations are available in thicknesses and for pipe sizes as follows:

1000000	lation kness, (mm)		Non IL II Insulation	5	es, NPS, in. (DN, mm) SL I* nsulation*		o-Wrap** nsulation**
1/2	(13)	1/2-6	(15-150)			1/2-6	(15-150)
I	(25)	1/2-15	(15-375)	16-33	(400-825)	1/2-33	(15-825)
11/2	(38)	1/2-14	(15-350)	15-33	(375-825)	1/2-33	(15-825)
2	(51)	1/2-12	(15-300)	14-33	(350-825)	1/2-33	(15-825)
21/2	(64)	2-11	(50-275)	12-26	(300-650)	1/2-32	(15-800)
3	(76)	3-10	(75-250)	11-26, 30	(275-650, 750)	1/2-31	(15-900)
31/2	(89)	41/2-9	(115-225)	10-18, 20-22, 24	(250-450, 500-550, 600)	1/2-30	(15-750)
4	(102)	41/2-8	(115-200)	9-21, 24, 25	(225-525, 600, 625)	1/29	(15-725)
41/2	(114)	6-7	(150-175)	8-10, 12, 14, 16, 18, 20, 24	(200-250, 300, 350, 400, 450, 500, 600)	1/2-28	(15-700)
5	(127)	6	(150)	7-14, 16-24	(175-350, 400-600)	1/2-27	(15-675)
51/2	(140)					6-26	(150-650)
6	(152)					6-25	(150-625)

^{*} SSLTall made-to-order except 14" x 2" (350mm x 51mm) and 16" x 1", 11/2" and 2" (400 mm x 25mm, 38mm) and 51 mm).
** Consult Packaging Data Supplement (PPLP5) available upon request for standard and made-to-order sizes.

Specification Compliance

- ASTM C 547, Mineral Fiber Pre-Formed Pipe Insulation, Type I to 850°F (454°C)
- ASTM C 1136, Flexible Low Permeance Vapor Retarders for Thermal Insulation: All Types
- ASTM C 795, Thermal Insulation for Use Over Austenitic Stainless Steel*
- · Mil. Spec. MIL-I-22344D, Insulation, Pipe, Thermal, Fibrous Glass
- Nuclear Regulatory Commission Guide 1.36, Non-Metallic Thermal Insulation*
- U.S. Coast Guard Approval No. 164.009, Noncombustible Materials (no-wrap)
- New York City MEA No. 344-83.
- CAN/CGSB-51.9 Type 1, Class 2
- NFPA 90A

^{*} Preproduction qualification testing complete and on file. Chemical analysis of each production lot required for total conformance.

Fiberglas® Pipe Insulation

Physical Property Data

Property	Test Method	Value					
Operating temperature range	ASTM C 411	0 to 850°F* (-18°C to	0 to 850°F* (-18°C to 454°C)*				
Jacket temperature limitation	ASTM C 1136	-20°F to 150°F (-29°C to 66°C)					
Jacket permeance	ASTM E 96, Proc.A	0.02 perm					
Puncture resistance	ASTM D 781	50 units					
Composite surface burning	UL 723,** ASTM E 84** or	Flame spread	25**				
characteristics	CAN/ULC-S102-M**	Smoke developed	50				

*Limited to single layer applications above 650 F (343 °C), but not greater than 6" (152 mm) thickness

Thermal Performance, ASTM C 680

Insula	tion (DN x Thk.		300 (14	191	Pipe (Opera	ting Ten 500 (2		ure, °		700 (3)	711	
in.	mm)		HL (T	1	HL (The state of the s	T		HL	The state of the s	ī
2 x ½ 4 x 1 8 x 1 12 x 1	(50 x 13) (100 x 25) (200 x 25) (300 x 25)	77 78 140 199	(74) (75) (135) (191)	128 109 112 113	(53) (43) (44) (45)								
2 x 1 ¹ / ₂ 4 x 1 ¹ / ₂ 8 x 1 ¹ / ₂ 12 x 1 ¹ / ₂	(50 x 38) (100 x 38) (200 x 38) (300 x 38)	Ľ				88 142 242 330	(85) (137) (233) (317)	116 123 128 129	(47) (51) (53) (54)	Ť			
2 x 2 4 x 2½ 8 x 2½ 12 x 3	(50 x 51) (100 x 64) (200 x 64) (300 x 76)									139 188 295 359	(134) (181) (284) (345)	127 125 129 125	(53) (52) (54) (52)

Heat Loss (HL), Btu/hr•ft (W/m); Surface Temperature (ST), °F (°C).
Design Conditions: Horizontal piping, 80°F (27°C) average ambient temperature, 0 mph wind speed, ASJ jacket.

Thickness to Prevent Surface Condensation

Owens Corning ASJ Jacket for up to 16" NPS (400 mm DN)(1), in. (mm)

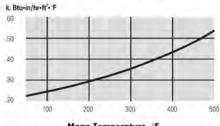
Amb	V	Relative	System Operating Temperatures							
°F	(°C)	Humidity(2)	35°F	(2°C)	45°F	45°F (7°C)		(13°C)		
110	(43)	50%-70% 80% 90%	1 1½ 3½	(25) (38) (89)	1 1½ 3	(25) (38) (76)	1 1 2'/a	(25) (25) (64)		
100	(38)	50%-70% 80% 90%	1 1½ 3	(25) (38) (76)	1 11/2 3	(25) (38) (76)	1 1 21/1	(25) (25) (64)		
90	(32)	50%-70% 80% 90%	1 1½ 3	(25) (38) (76)	1 1 21/4	(25) (25) (64)	1 1 2	(25) (25) (51)		
80	(27)	50%-80% 90%	1 21/6	(25) (64)	1 2	(25) (51)	1	(25) (38)		
70	(21)	.50%-80% 90%	1 1½	(25)	1 1½	(25) (38)	1	(25) (25)		

For NPS (DN) greater than 16" (400 mm), please contact your local Owens Corning Representative.

If humidity exceeds 90%, some condensation is to be expected; therefore, a coating of a mastic or PVC jacket overwrap is recommended as repeated or continual wetting of the ASJ jacket will degrade its vapor retarder performance.

OWENS CORNING WORLD HEADQUARTERS

ONE OWENS CORNING PARKWAY TOLEDO, OHIO, USA 43659


1-800-GET-PINK

www.owenscorning.com

Fiberglas, SSL II* and SSL* are registered trademarks of Owens Corning.

Pub. No. 5-IN-20547-D Printed in USA, June 2001 Copyright @ 2001 Owens Corning

Thermal Conductivity

Mean Temperature, °F

Apparent thermal conductivity curve determined in accordance with ASTM Practice C 1045 with data obtained by ASTM Test Method C 335. Values are nominal, subject to normal testing and manufacturing tolerances.

Mean Temp. °F	k Btu•in/hr•ft²•°F	Mean Temp.	λ W/m•°C
50	0.22	10	0.032
75	0.23	25	0.034
100	0.24	50	0.037
150	0.27	100	0.043
200	0.29	125	0.047
250	0.32	150	0.051
300	0.35	175	0.056
350	0.39	200	0.062
400	0.43	225	0.068
450	0.48	250	0.075
500	0.54	275	0.082

Application Recommendations

The hinged sections of Fiberglas Pipe Insulation are opened, placed over the pipe, carefully aligned, and sealed or jacketed as required by the form of the insulation and the application.

Fiberglas SSL II Pipe Insulation is shipped with the jacket and longitudinal lap closed, the two adhesives separated by a release strip. The insulation is opened by pulling the release strip from between the two adhesive strips. The insulation is placed on the pipe, carefully aligned, and the two adhesives rubbed firmly together to close and seal. The two part butt strip seal completes the positive closure. Application may be at ambient temperatures from 25°F (-4°C) to 110°F (43°C).

Fiberglas "No-Wrap" Pipe Insulation is designed for field-jacketing with pipe covering secured by wires or bands, vapor sealed where required.

Outdoor applications must be protected from weather. If painting is required, use only water base latex paint.

^{**}The surface burning characteristics of these products have been determined in accordance with UL 723, ASTM E 84 or CAN/ ULC-S102-M. These standards should be used to measure and describe the properties of materials, products or assemblies in response to heat and flame under controlled laboratory conditions and should not be used to describe or appraise the fire hazard or fire risk of materials, products or assemblies under actual fire conditions. However, results of this test may be used as elements of a fire risk assessment which takes into account all of the factors which are pertinent to an assessment of the fire hazard of a particular end use. Values are reported to the nearest 5 rating.

Manufacturer Specification Sheets

ECM 16: Boiler Replacements

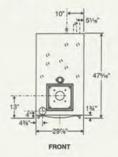
Investment Grade Audit

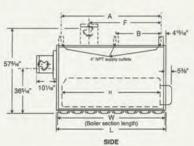
This page is intentionally left blank.

80 Commercial Boiler Weil-McLain

Series 1 Gas, Oil & Gas/Oil Water or Steam MBH: 346-1,674 Combustion Eff.: 85%

- Weil-McLain captured seal design
- > For Light Oil, Gas and Dual Fuel Combustion
- Packaged, Assembled Block or Knock-down
- Available for Water and Steam Heating Systems
- Available as Forced or Chimney draft venting




- . Top or Rear outlet flexibility
- · Easy access jacket

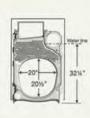
,		I=B=R			1	I=B=R Net	Rating						-
Boiler Model	Oil Input GPH	Gas Input MBH	Gross Output MBH	Boiler H.P.	Steam MBH	Steam Sq. Ft.	Water MBH	Flue Outlet Dia.	Net Firebox Volume Cu/Ft	Stack Gas Volume CFM	Positive Pressure in firebox	Water Boiler Content Gallons	Operating Weight Pounds
380	2.4	346	278	8.3	208	867	242	8	2.61	139	0.28	37.5	1170
480	3.4	491	396	11.8	297	1238	344	8	3.97	198	0.28	49	1411
580	4.45	639	515	15.4	386	1608	448	8	5.33	259	0.28	60.5	1752
680	5.5	787	634	18.9	476	1983	551	8	6.69	320	0.27	72	2093
780	6.5	935	753	22.5	565	2354	655	10	8.05	378	0.27	83.5	2434
880	7.5	1082	872	26	654	2725	758	10	9.41	436	0.27	95	2774
980	8.5	1230	991	29.6	743	3096	862	10	10.77	494	0.27	106.5	3115
1080	9.6	1378	1110	33.2	833	3471	965	10	12.13	558	0.26	118	3456
1180	10.6	1526	1229	36.7	922	3842	1069	10	13.49	616	0.26	129.5	3697
1280	11.6	1674	1348	40.3	1018	4242	1172	12	14.85	675	0.26	141	4038

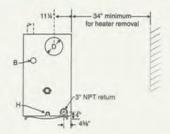
- . Burner input based on maximum of 2,000 feet altitude. For higher altitudes consult local Weil-McLain representative.
- NO.2 fuel oil Commercial Standard Spec. CS75-56. Heat value of oil-140,000 Btu/Gal.
- Consult Weil-McLain Burner Specifications and Data Sheet for gas pressures required. Gross I=B=R ratings have been determined under the I=B=R provision forced draft boiler-burner units.
- Net I=B=R ratings are based on net installed radiation of sufficient quantity for the requirements of the building and nothing need be added for normal piping and pickup. Water ratings are based on a piping and pickup allowance of 1.15. Steam ratings are based on the following allowances: 380 thru 1180 - 1.333; 1280 - 1.321. An additional allowance should be made for gravity hot water systems or for unusual piping and pickup loads. Consult local Weil-McLain representative.
- Stack gas volume at outlet temperature.
- . With 0.10" W.C. positive pressure at flue collar.

T	Supply T Qty - S			Tappings - Size	Dimensions (Inches) - Reference Drawings						ıs
Boiler Model	Water	Steam	Water	Steam	A	В	D	F	Н	L	W
380	2-4"	2-4"	2-3"	2-3"	13-1/8	, ,	8	12-7/16	13-1/2	21-5/8	20-3/8
480	2 - 4"	2-4"	2-3"	2-3"	20-1/8	-	8	13-5/8	20-1/2	28-5/8	27-3/8
580	2 - 4"	2-4"	2-3"	2-3"	27-1/8	- 1	8	13-5/8	27-1/2	35-5/8	34-3/8
680	2 - 4"	2-4"	2-3"	2-3"	34-1/8	-	8	13-5/8	34-1/2	42-5/8	41-3/8
780	2 - 4"	2-4"	2-3"	2-3"	41-1/8	-	10	27-5/8	41-1/2	49-5/8	48-3/8
880	2-4"	2-4"	2-3"	2-3"	48-1/8		10	27-5/8	48-1/2	56-5/8	55-3/8
980	2 - 4"	2-4"	2-3"	2-3"	55-1/8	1 - 1	10	41-5/8	55-1/2	63-5/8	62-3/8
1080	2-4"	3 - 4"	2-3"	2-3"	62-1/8	27-9/16	10	41-5/8	62-1/2	70-5/8	69-3/8
1180	2 - 4"	3 - 4"	2-3"	2-3"	69-1/8	34-9/16	10	55-5/8	69-1/2	77-5/8	76-3/8
1280	2 - 4"	3 - 4"	2-3"	2-3"	76-1/8	34-9/16	12	55-5/8	76-1/2	84-5/8	83-3/8

Water Boilers

working pressure)


.Built-in air eliminator


•30 PSIG ASME safety relief valve

(sections tested for 80 PSIG maximum

. Combination high limit/low limit control

. Combination pressure/temperature gauge

BACK

INTERMEDIATE

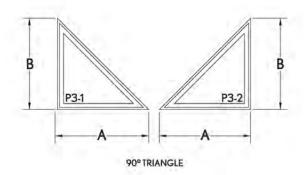
Steam Boilers

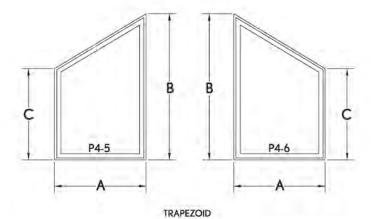
- •15 PSIG ASME safety valve (side outlet)
- . Low limit and high limit pressure controls
- .Steam pressure gauge
- · Gauge glass. gauge cocks and gauge guards

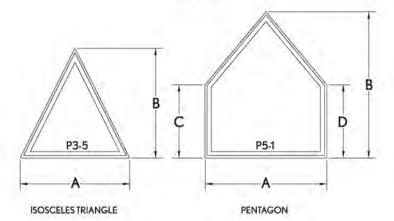
Optional Equipment

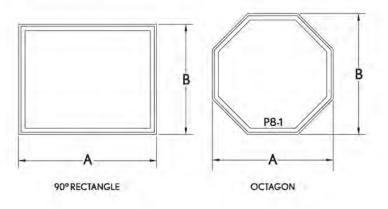
- *Low water cut-offs (probe or float type)
- Tankless heaters
- ·Burner mounting plate (for H-80 boilers)
- ·Factory-assembled sections
- *Fire-tested packaged boiler (with low water cut-off)

- *Cast iron sections
- •Insulated steel jacket
- *Flame retention burner (except H-80)
- . Burner mounting plate with refractory
- *Aluminized steel flue collector assembly
- .Steel flue collar and breeching damper .Observation ports on front and rear sections
- *Refractory blanket and target wall in
- combustion area
- *Side cleanout plates
- .Flue brush


Manufacturer Specification Sheets


ECM 17: Window Replacements


Investment Grade Audit



This page is intentionally left blank.

How to Specify

When ordering a Trapezoid, Triangle, or Rectangle window, provide a sketch of the unit as viewed from the exterior, also include key Rough Opening dimensions.

Example: To order a window of a Trapezoid opening provide the measurements of A, B, and C as indicated. For other shapes, give the dimensions shown.

Specification Notes:

All units are subject to validation.

Maximum/Minimum Guidelines Maximum Square Footage: 49 sq. ft. of Rough Opening Maximum Width: 114" Rough Opening

Maximum Height: 114" Rough Opening

Minimum (RECT, P3, P4, P5): 12" x 12" Rough Opening

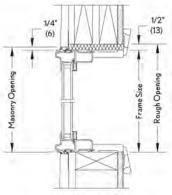
Minimum (P8): 18" x 18" Rough Opening

Minimum Short Leg (P4, P5): 8" Rough Opening

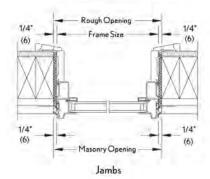
P3 Pitch: 3/12 to 36/12 Pitch Available P4 Pitch: 36/12 Maximum Pitch Available

P5 Pitch: 36/12 Maximum Pitch Available

Multiple Assemblies


Multiple assemblies can be factory mulled.

MAXIMUM ROUGH OPENING: not to exceed 114" X 78". Maximum up to 6 units wide by 1 unit high.


MAXIMUM ROUGH OPENING: not to exceed 96" X 96" Maximum up to 5 units wide by 5 units high.

NOTE: Units with Rough Opening larger than 37.75 sq. ft. will be standard tempered.

Construction Details

Head Jamb & Sill

Operator Units

MO (mm) RO (mm) FS (mm)	1'-6' (457) 1'-6' (457) 1'-51/2' (445)	2' - 0' (610) 2' - 0' (610) 1' -11 1/2' (597)	2 - 6° (762) 2' - 6° (762) 2 - 51/2' (749)	2' - 8" (813) 2' - 8" (813) 2' - 71/2" (902)	3' - 0' (914) 3' - 0' (914) 2' - 11 1/2' (902)	3'-6' (1067) 3'-6' (1067) 3'-51/2' (1054)	4' - 0" (1219) 4' - 0" (1219) 3' -11 1/2" (1207)
T-IT 3/4* (603) Q2 - 0* (610) T-IT 1/2* (597) 85/16* (211)	12 9/16* (319)	18 9/16* (471)	24.9/16" (624) IFDH2620	26 9/16* (675)	30 9/16° (776)	36 9/16" (929) IFDH3620	429/16" (1081) IFDH4020
2 - 53/4" (756) 2 - 6 (762) 2 - 51/2" (749) 115/16" (287)	IFDH1626	IFDH2026	IFDH2626	IFDH2826	IFDH3026	IFDH3626	IFDH4026
2"-113/4" (908) 3 - 0" (914) 2 - 11 1/2" (902) 14 5/16" (363)	IFDH1630	IFDH2030	IFDH2630	IFDH2830	IFDH3030	IFDH3630	IFDH4030
3 · 53/4 · (1060) 3 · 6 · (1067) 3 · 5 · 12 · (1054) 17 5 / (6 ° (440)	IFDH1636	IFDH2036	IFDH2636	IFDH2836	IFDH3036	IFDH3636	IFDH4036
3 - 113/4" (1213) 4" - 0" (1219) 3" - 11 1/2" (1207) 20 5/16" (516)	IFDH1640	IFDH2040	IFDH2640	IFDH2840	IFDH3040	IFDH3640	IFDH4040
4 · 53/4 ((365) 4 · 6 ((372) 4 · 51/2 ((359) 23 5/16 (592)	IFDH1646	IFDH2046	IFDH2646	IFDH2846	IFDH3046	IFDH3646	IFDH4046
4'-113/4'(1518) 5'-0'(1524) 4'-111/2'(1511) 26 5/16'(668)	IFDH1650	IFDH2050	IFDH2650	IFDH2850	IFDH3050 E	IFDH3650 E	IFDH4050 E
5-53/4 (1670) 51-6 (1676) 5-51/2 (1664) 295/10" (744)	IFDH1656	IFDH2056	JFDH2656	1FDH2856	IFDH3056 E	IFDH3656E	IFDH4056 E
5 - 11 3/4" (1822) 6 - 0" (1829) 5 - 1" 1/2" (1816) 32 5/16" (82)	IFDH1660	IFDH2060	IFDH2660E	IFDH2860E	IFDH3060 E	IFDH3660 E	IFDH4060 E
6 -5 3.4" (1975) 6 - 6 (1981) 6 -5 1/2 (1969) 35 5/16 (897)	IFDH1666	IFDH2066	IFDH2666 E	IFDH2866 E	IFDH3066 E	IFDH3660 E	IFDH4066 E

2 Wide Operator Units

MO (mm) RO (mm) FS (mm)	3 - 0° (914) 3 - 0° (914) 2 - 11 1/2° (902)	4'-0' (1219) 4'-0" (1219) 3'-11 1/2" (1207)	5'-0" (1524) 5'-0" (1524) 4'-11 1/2" (1511)	5' - 4" (1626) 5' - 4" (1626) 5 - 31/2" (1600)	6'-0" (1829) 6'-0" (1829) 5'-11 1/2" (1816)	7'-0" (2134) 7'-0" (2134) 6'-11 1/2" (2121)	8' - 0" (2438) 8' - 0" (2438) 7 - 11 1/2" (2426)
7 - 17 3/4 (603) 55 2 - 0 (610) 1 - 11 1/2 (697) (881)	IFDH1620	IFDH2020	(FDH2620	IFDH2820	(FDH3020	IFDH3620	IFDH4020
2 - 5 3/4" (756) 2 - 6 (762) 2 - 5 1/2" (749)	IFDH1626	(FDH2026	(FDH2626	IFDH2826	IFDH3026	IFDH3626	(FDH4026
2'-113/4'(908) 3-0 (914) 2'-111/2'(902)	IFDH1630	IFDH2030	IFDH2630	IFDH2830	IFDH3030	IFDH3630	IFDH4030
3 - 5 3/4" (1050) 3 - 6" (1067) 3 - 51/2" (1054)	IFDH1636	IFDH2036	IFDH2636	IFDH2836	(FDH3036	(FDH3636	1FDH4036
3-13/4 (219) 4-0 (1219) 3-11 1/2 (1207)	IFDH1640	IFDH2040	IFDH2640	IFDH2840	IFDH3040	IFDH3640	IFDH4040
4'-5'4'(355) 4-6'(372) 4'-5'(259)	IFDH1646	IFDH2046	IFDH2646	IFDH2846	IFDH3046	IFDH3646	IFDH4046
4:113/4"(1518) 5:-0"(1524) 4:-111/2"(151)	IFDH1650	IFDH2050	IFDH2650	(FDH2850	IFDH3050 E	IFDH3650 E	IFDH4050 E
5 -5.3/4" (1670) 5 -6" (1675) 5 -51/2" (1664)							
	IFDH1656	IFDH2056	(FDH2656	IFDH2856	IFDH3056 E	IFDH3656E	IFDH4056 E
5 . 113/4* (1822) 6 - 0* (1829) 5 . 11 1/2* (1816)	IFDH1660	IFDH2060	IFDH2660 E	IFDH2860 E	IFDH3060E)FDH3660 E	IFDH4060 E
6 - 534° (1975) 6 - 6 (1981) 6 - 51/2° (1969)	IFDH1666	IFDH2066	IFDH2666E	IFDH2866 E	IFDH3066E	IFDH3660 E	IFDH4066 E

3 Wide Operator Units

3 Wide C	Operator Units				
MO (mm) RO (mm) FS (mm)	4' - 6' (1372) 4' - 6' (1372) 4' - 5 1/2' (1359)	6' - 0'' (1829) 6' - 0'' (1829) 5' - 11 1/2'' (1816)	7 - 6" (2286) 7 - 6" (2286) 7 - 51/2" (2273)	8'-0' (2438) 8'-0' (2438) 7 11 1/2' (2413)	9' - 0" (2743) 9' - 0" (2743) 8' - 11 1/2" (2731)
RO (mm) FS (0.00) (0.00) 5-0.00(0.00) 1-11/2.0000	IFDH1620	IFDH2020	IFDH2620	IFDH2820	IFDH3026
2'-53/4'(756) 2'-6'(762) 2'-5/2'(749)	IFDH1626	IFDH2026	IFDH2626	(FDH2826	IFDH3026
2 - 113/4* (908) 3 - 0* (914) 2 - 11 1/2* (902)	IFDH1630	IFDH2030	IFDH2630	IFDH2830	.IFDH3030
3:-53/4" (1060) 3:-6" (1067) 3:-51/2" (1054)	IFDH1636	IFDH2036	IFDH2636	IFDH2836	IFDH3036
3 - 11 3/4" ((213) 4 - 0" ((219) 3 - 11 1/2" ((207)	IFDH1640	IFDH2040	IFDH2640	IFDH2840	IFDH3040
4'-53/4' (1365) 4'-6' (1372) 4'-51/2' (1359)	IFDH1646	IFDH2046	IFDH2646	IFDH2846	IFDH3046
4 - 113/4" (1518) 5 - 0" (1524) 4 - 11 1/2" (1511)	IFDH1650	IFDH2050	IFDH2650	IFDH2850	IFDH3050 E
5 -5 34* (670) 5 -6 (676) 5 -5 (2* (1664)	IFDH1656	IFDH2056	IFDH2656	(FDH2856	IFDH3056 E
5 - 113/4" (1822). 6 - 0" (1829) 5 - 111/2" (1816).	IFDH1660	IFDH2060	IFDH2660 E	IFDH2860 E	IFDH3060 E
6 - 5342 (1975) 6 - 6* (1981) 6 - 51/2* (1969)	IFDH1666	1FDH2066	IFDH2666 E	IFDH2866 E	IFDH3066 E

4 Wide Operator Units

- Wide C	perator Oritis	
MO (mm) RO (mm) FS (mm)	6' - 0" (1829) 6' - 0" (1829) 5' - 11 1/2" (1816)	8° - 0° (2438) 8° - 0° (2436) 7' -11' 1/2' (2426)
7-11-34 (603) 33 (2:-0"(610) 11-11 (597) (110)	IFDH1620	IFDH2020
2 - 53/4 (756) 2 - 6 (762) 2 - 51/2 (749)	IFDH1626	IFDH2026
2 - 113/4* (908) 31 - 0* (914) 2* - 111/2* (902)	IFDH1630	IFDH2030
3 -53/4 (1060) 3 -6 (1067) 3 -51/2 (1054)	IFDH1636	IFDH2036
3 - n 3.4" (1213) 4 - 0 (1219) 3 - 11 1/2" (1207)	IFDH1640	IFDH2040
4 - 53/4 (1365) 4 - 6 (1372) 4 - 51/2" (1359)	IFDH1646	IFDH2046
4 - n 3/4" (1518) 5'-0" (1524) 4'-11 1/2" (1510)	IFDH1650	IFDH2050
5 - 53/4" (1670) 5 - 6*(1676) 5 - 51/2" (1664)	IFDH1656	IFDH2056
5 - 113/4" (1822) 6 - 0" (1829) 5' - 11 172" (1816)	IFDH1660	IFDH2060
6 - 53/4" (1975) 6 - 6" (1981) 6 - 51/2" (1969)	IFDH1666	(FDH2066

GBG available in standard Rectangular lite cut, shown. Other GBG lite cuts shown on page 3.

E = These windows (in equal sash) meet National Egress Codes for fire evacuation. Local codes may differ.

Details and Elevations not to scale.

Available in equal, cottage, and reverse cottage sash configurations. Cottage and reverse cottage sash configurations are not available on 20, 60, and 66 call number heights.

Obscure Glass option available on all units.

Units may optionally include a window opening control device tested to ASTM F2090-10, which can be released from the inside without the use of a key, tool, special knowledge, or force greater than that required for normal unit operation.

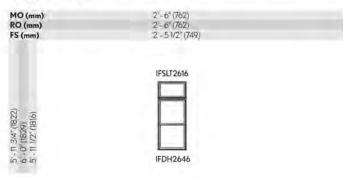
Special sized units available within product size matrix. See your Integrity retailer.

See page 52 for specific PG Ratings.

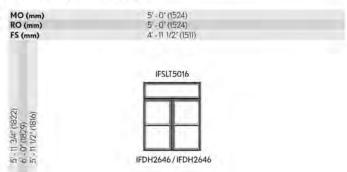
Multiple Assemblies

Multiple assemblies can be factory mulled.

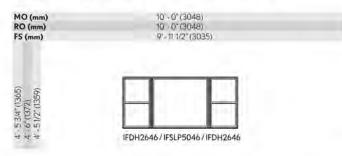
MAXIMUM ROUGH OPENING not to exceed 114" X 78". Maximum up to 6 units wide by 1 unit high.

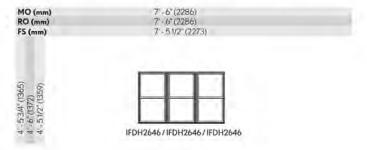

MAXIMUM ROUGH OPENING not to exceed 96" X 96". Maximum up to 5 units wide by 5 units high.

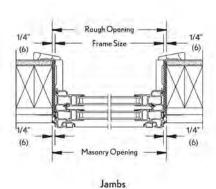
Field mull kits are available. Structural mullion reinforcement is required for some assemblies.

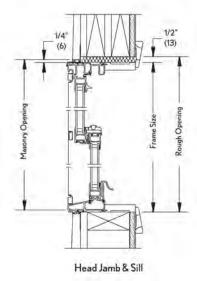

Please consult your local Integrity from Marvin representative for more information.

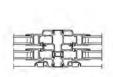
DOUBLE HUNG - Transoms and Multiple Assemblies

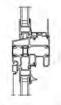

In-Sash Transom Mulled Over Double Hung – Operator Unit


In-Sash Transom Mulled Over Double Hung – 2 Wide Operator Unit


Double Hung Flankers with Picture Center Unit*




Double Hung Flankers with Operator Center Unit



Construction Details

Vertical Mullion

Horizontal Mullion Transom/Operator

This product is only available field mulled.

Details and Elevations not to scale.

Available in equal, cottage, and reverse cottage sash configurations. Cottage and reverse cottage sash configurations are not available on 20, 60, and 66 call number heights.

Obscure Glass option available on all units.

Units may optionally include a window opening control device tested to ASTM F2090-10, which can be released from the inside without the use of a key, tool, special knowledge, or force greater than that required for normal unit operation.

Special sized units available within product size matrix. See your Integrity" retailer.

See page 52 for specific PG Ratings.

Multiple Assemblies

Multiple assemblies can be factory mulled.

MAXIMUM ROUGH OPENING not to exceed 114" X 78". Maximum up to 6 units wide by 1 unit high.

MAXIMUM ROUGH OPENING not to exceed 96" X 96". Maximum up to 5 units wide by 5 units high.

Field mull kits are available. Structural mullion reinforcement is required for some assemblies.

Please consult your local Integrity from Marvin representative for more information.

190, 350 and 500 Standard Entrances Single Source **Packages** Generate Versatile First Impressions Garland Special Events Center, Garland, TX Architect: HKS, Inc., Dallas, TX Glazing Contractor: B & B Glass, Inc., Dallas, TX

Tough yet attractive, the clean lines of Kawneer's Standard Entrances are designed as a single-source package of door, door frame and hardware that is easily adaptable to custom requirements. Designed to complement new or remodel construction, modern or traditional architecture, they are engineered, constructed and tested to make good first impressions while withstanding the rigors of constant use by occupants and visitors.

Performance

To resist both lever arm and torsion forces that constantly act on any door, all three entrances feature welded corner construction with Sigma deep penetration and fillet welds plus mechanical fastenings at each corner – a total of 16 welds per door. Each door corner comes with a Limited Lifetime Warranty, good for the life of the door under normal use operation. It is transferable from building owner to owner and is in addition to the standard two-year warranty covering material and workmanship of each Kawneer Door.

- Thermoplastic elastomer weatherstrip in bladestop of frame jambs, header or transom bar.
- Integral polymeric fin is attached to adjustable astragal creating an air barrier between pairs of doors.
- 3. Optional surface-applied bottom weatherstrip with flexible blade gasket. Extruded raised lip on threshold to provide a continuous contact surface for bottom weatherstrip.
- Standard 1/4" beveled glass stops sheet water and dirt off without leaving residue.
- Available in all finishes offered by Kawneer.

The 190 Narrow Stile Entrance

- Is engineered for moderate traffic in applications such as stores, offices and apartment buildings
- Vertical stile measures 2-1/8"; top rail 2-1/4" and bottom rail 3-7/8"
- Results in a slim look that meets virtually all construction requirements

The 350 Medium Stile Entrance

- Provides extra strength for applications such as schools, institutions and other high traffic applications
- Vertical stiles and top rails measure 3-1/2"
- Bottom rail measures 6-1/2" for extra durability

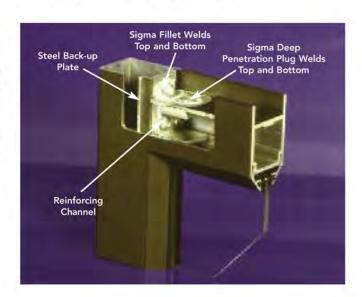
The 500 Wide Stile Entrance

- Creates a monumental visual statement for applications such as banks, libraries and public buildings
- Vertical stiles and top rail are 5"; bottom rail measures 6-1/2"
- Results in superior strength for buildings experiencing heavy traffic conditions

Economy

Kawneer's Sealair® bulb neoprene weatherstripping forms a positive seal around the door frame and provides a substantial reduction in air infiltration, resulting in improved comfort and economies in heating and cooling costs. The system is wear and temperature-resistant and replaces conventional weathering. Bottom weatherstrip at the interior contains a flexible blade gasket to meet and contact the threshold, enhancing the air and water infiltration performance characteristics.

For the Finishing Touch


Permanodic® Anodized finishes are available in Class I and Class II in seven different colors.

Painted Finishes, including fluoropolymer that meet or exceed AAMA 2605, are offered in many standard choices and an unlimited number of specially-designed colors.

Solvent-free powder coatings add the "green" element with high performance, durability and scratch resistance that meet the standards of AAMA 2604.

General

- Heights vary to 10'; widths range from approximately 3' to 4'
- Door frame face widths range to a maximum of 4", while depths range to 6"
- Door operation is single or double-acting with maximum security locks or Touch Bar Panics standard
- Architect's Classic one inch round, bent bar push/pull hardware is available in various finishes and sizes
- Infills range from under 1/4" to more than 1"

Kawneer Company, Inc. Technology Park / Atlanta 555 Guthridge Court Norcross, GA 30092 kawneer.com 770 . 449 . 5555

Manufacturer Specification Sheets

ECM 18: Solar PV Array

Investment Grade Audit

This page is intentionally left blank.

Eagle 72M G2 370-390 Watt

MONO PERC MODULE

Positive power tolerance of 0~+3%

KEY FEATURES

Diamond Cell Technology

Uniquely designed high performance 5 busbar mono PERC cell

High Voltage

UL and IEC 1500V certified; lowers BOS costs and yields better LCOE

PID Free

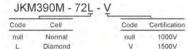
World's 1" PID Free module

Low-Light Performance

Advanced glass technology improves light absorption and retention

Strength and Durability

Certified for high snow (5400Pa) and wind (2400Pa) loads

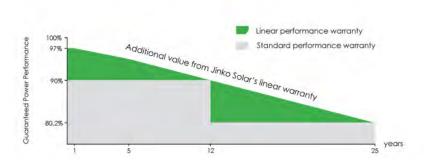

Weather Resistance

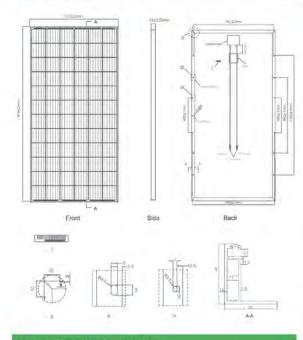
Certified for salt mist and ammonia resistance

ISO9001:2008 Quality Standards

- ISO14001:2004 Environmental Standards
- OHSAS18001 Occupational Health & Safety Standards
- IEC61215, IEC61730 certified products
- UL1703 certified products

Nomenclature:




LINEAR PERFORMANCE WARRANTY

10 Year Product Warranty • 25 Year Linear Power Warranty

Engineering Drawings

Electrical Performance & Temperature Dependence

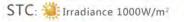
Current-Voltage & Power-Voltage Curves (390W) Temperature Dependence of Isc,Voc,Pmax Voltage (V) Cell Temperature(°C)

Cell Type Mono PERC Diamond Cell (158.75 x 158.75 mm) No. of Cells 72 (6×12) Dimensions 1979×1002×40mm (77.91×39,45×1.57 inch) Weight 22.5 kg (49.6 lbs.) 3.2mm, Anti-Reflection Coating, High Transmission, Low Iron, Tempered Glass Front Glass

Frame Anodized Aluminium Alloy

Mechanical Characteristics

Junction Box IP67 Rated Output Cables 12 AWG, Length 1200mm or Customized Length Fire Type Type 1


Packaging Configuration


(Two pallets = One stack)

26pcs/pallet, 52pcs/stack, 572pcs/40'HQ Container

SPECIFICATIONS

Module Type	JKM370	M-72L-V	JKM375	M-72L-V	JKM380	M-72L-V	JKM385	M-72L-V	JKM390	M-72L-V
	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT	STC	NOCT
Maximum Power (Pmax)	370Wp	278Wp	375Wp	282Wp	380Wp	286Wp	385Wp	290Wp	390Wp	294Wp
Maximum Power Voltage (Vmp)	39.9V	38.1V	40.2V	38.3V	40.5V	38.6V	40.8V	38.8V	41.1V	39.1V
Maximum Power Current (Imp)	9.28A	7.30A	9,33A	7,36A	9.39A	7.42A	9.44A	7.48A	9.49A	7.54A
Open-circuit Voltage (Voc)	48.5V	47.0V	48.7V	47.2V	48.9V	47.5V	49.1V	47.7V	49.3V	48.0V
Short-circuit Current (Isc)	9,61A	7.75A	9.68A	7.82A	9.75A	7.88A	9.92A	7.95A	10.12A	8.02A
Module Efficiency STC (%)	18	66%	18.5	91%	19.	16%	19.	42%	19	67%
Operating Temperature (°C)					-40°C~	+85°C				
Maximum System Voltage				15	00VDC(UL)	/1500VDC	IEC)			
Maximum Series Fuse Rating					20)A				
Power Tolerance					0~	3%				
Temperature Coefficients of Pmax					-0.39	%/°C				
Temperature Coefficients of Voc					-0.29	%/°C				
Temperature Coefficients of Isc					0.048	3%/°C				
Nominal Operating Cell Temperature	(NOCT)				45±	2°C				

AM=1.5

Wind Speed 1m/s

^{*} Power measurement tolerance: ± 3%

Three Phase Inverter with Synergy Technology

for the 277/480V Grid for North America

SE66.6KUS / SE100KUS

INVERTERS

Specifically designed to work with power optimizers

- Easy two-person installation each unit mounted separately, equipped with cables for simple connection between units
- Balance of System and labor reduction compared to using multiple smaller string inverters
- Independent operation of each unit enables higher uptime and easy serviceability
- No wasted ground area: wall/rail mounted, or horizontally mounted under the modules (10° inclination)

- Integrated arc fault protection and rapid shutdown for NEC 2014 and 2017, per article 690.11 and 690.12
- Built-in module-level monitoring with Ethernet or cellular GSM
- Fixed voltage inverter for superior efficiency (98.5%) and longer strings
- Integrated DC Safety Switch
- Built-in RS485 Surge Protection, to better withstand lightning events

/ Three Phase Inverter with Synergy Technology for the 277/480V Grid for North America

SE66.6KUS / SE100KUS

	SE66.6KUS	SE100KUS	
OUTPUT			
Rated AC Power Output	66600	100000	VA
Maximum AC Power Output	66600	100000	VA
AC Output Line Connections	4-wire WYE (L	1-L2-L3-N) plus PE	
AC Output Voltage Minimum-Nominal-Maximum(*) (L-N)		277 - 305	Vac
AC Output Voltage Minimum-Nominal-Maximum ⁽¹⁾ (L-L)	422.5	- 480 - 529	Vac
AC Frequency Min-Nom-Max ^(I)	59.3	- 60 - 60.5	Hz
Maximum Continuous Output Current (per Phase) @277V	80	120	A
GFDI Threshold		1	A
Utility Monitoring, Islanding Protection, Configurable Power Factor, Country Configurable Thresholds		Yes	
INPUT			
Maximum DC Power (Module STC) / Unit	90000 / 45000	135000 / 45000	T W
Transformer-less, Ungrounded		Yes	
Maximum Input Voltage DC to Gnd		500	Vdc
Maximum Input Voltage DC+ to DC-	T I	1000	Vdc
Nominal Input Voltage DC to Gnd		425	Vdc
Nominal Input Voltage DC+ to DC-		850	Vdc
Maximum Input Current	80	120	Adc
Maximum Input Short Circuit Current		120	Adc
Reverse-Polarity Protection		Yes	
Ground-Fault Isolation Detection	350kΩ Ser	nsitivity per Unit	
CEC Weighted Efficiency	7	98.5	%
Nighttime Power Consumption		< 12	W
ADDITIONAL FEATURES			
Supported Communication Interfaces	RS485, Ethernet, (Cellular GSM (optional)	
Rapid Shutdown	NEC2014 and NEC2017 complian	nt/certified, upon AC Grid Disconnect	
R\$485 Surge Protection	É	Built-in	
DC SAFETY SWITCH			
DC Disconnect	1000V / 2 x 40A	1000V / 3 x 40A	1
STANDARD COMPLIANCE		1	1
Safety	1111741 1111741 5 A 1	JL1699B, UL1998, CSA 2.22	+
Grid Connection Standards		ule 21, Ruie 14 (HI)	
Emissions		art15 class A	-
INSTALLATION SPECIFICATIONS	rec pr	SI FID CIOSS W	+
		T	1
Number of units AC Outsit & Constitut Size (Add: AWC (AMD: DE AWC)	2	3	-
AC Output Conduit Size / Max AWG / Max PE AWG DC Output Conduit Size / Terminal Block AWG Range /	1.5" / 2/0 / 6	2" / 4/0 / 4	
Number of Strings ^(j)	2 x 1.25" / 6-14 / 6 strings	2 x 1.25* / 6-14 / 9 strings .5 x 10.5 / 940 x 315 x 260;	
Dimensions (H x W x D)	Secondary Unit: 21 x 1	2.5 x 10.5 / 540 x 315 x 260	in/m
Weight Consider Towns of Person		8; Secondary Unit 99.2 / 45	lb/ki
Operating Temperature Range		0 / -40 to +60 ⁽¹⁾	°F/"
Cooling	ran (use	r replaceable)	-309-8
Noise Protection Pating	- Kit	< 60	dBA
Protection Rating	N	EMA 3R	_

For other regional settings please contact SolarEdge support Single input option per unit (up to 3AWG) available De-rating from 50°C

Manufacturer Specification Sheets

ECM 19: AHU Replacements

Investment Grade Audit

This page is intentionally left blank.

QUALITY IS SOMETHING WE TAKE PERSONALLY

***** We design and build YORK® Predator® split systems here in North

directly affect quality. It's this commitment to excellence that allows us America, where we can closely monitor and improve processes that

to offer outstanding warranties, meet the highest industry standards and deliver energy-saving comfort that lasts. That's why, when it comes to commercial comfort, your confidence is our commitment.

Predator® Split System Air Conditioners/Heat Pumps (YC/YD/PC/PD)

MODEL CAPACITY EER IEER LBS. VCOSD/NCHOS 78 112 130 387 VCOSD/NCHO 8 119 130 387 VCOSD/NCHO 10 114 12.5 497 VCOSD/NCHO 10.5 110 12.1 497 VCOSD/NCHO 12.5 110 12.1 497 VCOSD/NCHO 12.5 110 12.1 490 VERNINGAR 12.5 110 12.1 490 VERNINGAR 12.5 110 12.1 490 VERNINGAR 15 11.2 12.2 909 VERNINGAR 15 11.2 11.7 894 VERNINGAR 16 11.2 11.4 894 VERNINGAR 20 11.2 11.9 942 VERNINGAR 20 11.3 11.9 942 VERNINGAR 20 11.3 11.4 430 VERNINGAR 20 11.					
78 112 130 387 8 119 130 387 10 114 125 499 125 110 113 499 125 110 121 490 125 110 121 690 15 112 127 894 16 112 116 894 16 112 116 894 16 112 116 894 16 112 118 894 20 113 118 894 20 113 118 894 20 113 118 894 20 113 118 894 20 113 118 894 20 113 118 894 20 113 119 894 20 113 114 400 21 110 114 574	MODEL	NOMINAL CAPACITY (TONS)	EER	IEER	LBS.
8 119 130 387 10 114 115 490 125 110 113 490 125 110 113 490 125 110 121 490 125 110 121 490 15 112 122 596 15 112 116 684 16 112 116 684 16 112 116 684 16 113 114 684 20 113 119 927 20 113 119 927 20 20 20 20 21 20 20 22 20 20 23 20 20 24 20 20 25 20 20 26 21 21 20 27 20 20 28 20 20 29 20 20 20 20 20 20 20	VC090/NC090	7.8	11.2	13.0	387
10 114 115 497 497 125 497 125 125 497 125 125 497 125 125 497 125 125 497 125 125 490 125 125 490 125 125 490 125	-YC090/WC120	.00	11.9	13.0	387
10 112 112 490 113 490 113 490 113 490 113 490 490 113 490		10	11.4	12.5	497
125 110 133 497 125 110 121 490 15 117 122 490 16 112 112 894 16 112 116 894 16 112 N/A 894 16 117 114 894 16 117 114 894 20 113 118 894 20 113 118 894 20 113 118 942 20 113 119 927 20 113 119 927 20 116 114 574 20 110 114 574 20 110 114 574 20 116 115 968 20 115 116 968 20 115 968 968 20 115 968 968	VD320/ND320	10	11.2	11.2	490
125 110 121 490 125 596 125	VC15Q/NC190	12.5	11.0	13.3	497
15 112 909 909 909 915 917 918	YDJSQ/NDJBD	12.5	11.0	12.1	490
16 117 127 894 115	YCHRONCHIO	15	11.2	12.2	606
15 112 116 684 116 116 116 116 116 117 114 118	YCTHO/NC240	16	11.7	12.7	894
16 112 N/A 684 16 112 N/A 684 16 112 N/A 684 16 113 134 684 20 113 119 927 20 116 N/A 927 20 116 N/A 927 20 110 114 430 110 114 574 12 106 115 948 13 106 115 948 20 20 20 20 20 20 20	VD180/ND180	15	11.2	11.6	894
16 112 N/A 684 16 117 134 684 20 113 135 942 20 116 N/A 977 20 116 N/A 977 25 102 122 942 75 110 114 430 10 110 114 574 15 106 115 962 20 106 115 942 20 106 115 942 20 106 115 942 20 106 115 942 20 115 1156 942 20 115 1156 115 1156 20 116 117 1136 1156	YD180/(2)NC090	16	11.2	NA	894
NOTE 16 117 134 894 894 894 894 894 894 895	VD180//2)NC120	16	11.2		894
NYCARD 20 113 1156 942 9	YD350/ND240	16	11.7	13.4	894
NACHOLIST 20 113 119	YC240/NC240		11.3	13.6	942
NA NA NA NA NA NA NA NA		20	11.3	11.9	927
25 10.2 12.2 75 11.0 11.4 10 11.0 11.4 11 10.6 11.5 12 10.6 11.5		20	11.6	NA	927
75 110 114 10 110 114 11 10 110 114 12 10 115 13 106 115		25	10.2		942
10 110 114 15 106 115 10 106 115 20 106 117	PC090/AC090	7.5	11.0	11.4	430
15 106 115 15 106 115 20 106 117		10	11.0	11.4	574
15 106 115 20 106 11.7	PC180/NC180	15	10.6	11.5	896
10.6		15	10.6	11.5	942
		30	10.6	11.7	1,126

Predator® Split System Evaporator Blowers (NC/ND)

MODEL	ELECTRIC HEAT (KW)	CFM	LBS.
06039	10, 16, 26, 36	3000	498
VC120	10, 16, 26, 36	4000	539
	10, 16, 26, 36	4000	541
	10, 16, 26, 35, 50	0009	737
ND180	10, 16, 26, 35, 50	0009	765
	20, 32, 52	8000	873
0240	20, 32, 52	8000	873
		10,000	1130

* YORK

The YORK brand of Johnson Controls, Inc. @2015 Johnson Controls, Inc. 5005 York Drive, Norman, OK 13069 www.YORK.com Subject to change notice. PUBL-6450-B-1015 Supersedes PUBL-6450-A-0710 All rights n

Limited warranties for NC, ND models:

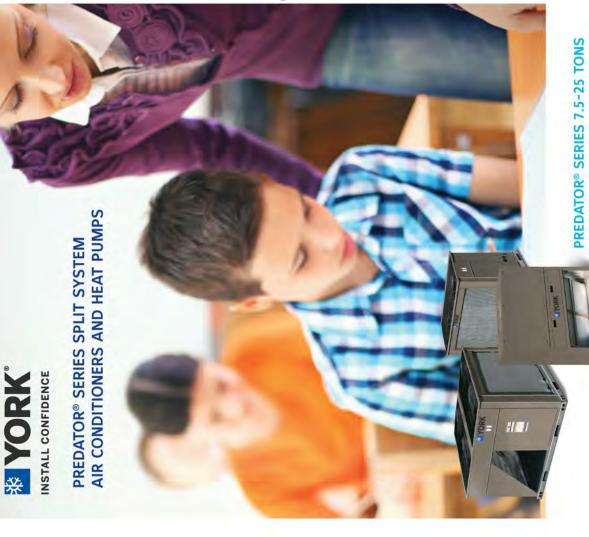
BENEFITS TO COUNT ON

Compact Predator® series units install easily on rooftops or

dates locations three or more stories sub-cooling capacity that accommo even ground level, thanks to below the evaporator coil,

Reliable performance Industrial-grade scroll

aluminum tubing for durability and conditions. Condenser coils are constructed of MicroChannel compressors ensure reliable operation in the toughest efficient operation.



Quiet operation


while vertical discharge condenser mounted on rubber isolators to Scroll compressors are fans direct sound up and away reduce vibration transmission, from surrounding structures.

split systems deliver the simplicity, efficiency and long-term reliability that give you a competitive advantage for some of the world's most demanding applications. Today, smart YORK® Predator® light commercial For more than 140 years, YORK® commercial systems have provided heating and cooling solutions for challenging projects.

PREDATOR® SPLIT SYSTEM AIR CONDITIONERS AND HEAT PUMPS

- Meets EPACT 2005 and ASHRAE 90.1-2013 efficiency standards
- · Inherently protected condenser fan motors
- Two-pipe and four-pipe configurations available
- · Five-minute, anti-short cycle timer and minimum compressor runtime
- Factory-installed disconnects, convenience outlet and technicoated coil option
- Advanced scroll compressors provide both high efficiency and reliability
- · Condenser coils are constructed of MicroChannel aluminum tubing and fins for durability and longlasting, efficient operation

- Crankcase heaters that de-energize when the compressor is operating
- Self-contained high- and low-pressure controls
- Solid-state or internal line break compressor motor protection
- Class 2, 24-volt thermostat control circuit
- · Filter-drier is shipped in the unit's control box for field installation in the liquid line
- Copper stub-outs are factory-mounted on the suction and liquid lines to simplify the field piping connections

THE ADVANCED PREDATOR® SPLIT SYSTEM PRODUCT LINE

Compact design, clean styling and quiet operation make these units suitable for almost any commercial application.

Equipment controls and advanced evaporator coils and blower Predator® split system outdoor units use Simplicity® Smart motors to provide quiet, reliable operation in a range of commercial environments.

and includes the blower wheels, the drives and a factory-installed can be repositioned to meet almost any installation requirement Evaporator blower units are designed with two distinct modules to provide maximum application flexibility. The blower module motor of your choice.

put performance in the palm of your hand Simplicity® Smart Equipment controls

11/10/15 3:39 PM 6450-Y-PredSplit-Bro-D5b-indd 2-3

Trane Precedent Gas/Electric Packaged Rooftop

Unit Ove	rview - YHO	092F3RI	_A**G0C0000	00000000	00000000	0000				
Application	Unit Size	Supp	oly Fan	Extern	al Dimensio	ns (in.)	We	ight	EER	IEER/SEER
DX cooling,	7.5 Ton Dual compressor	Airflow	External Static Pressure	Height	Width	Length	Minimum	Maximum	12.6 EER	14.50
yas near	and the same	3000 cfm	0.400 in H2O	3.91 ft	4.44 ft	7.39 ft	1026.0 lb	1291.0 lb		

Unit Features

Fresh Air Selection Econ-comp enthalpy 0-100% 3ph

Unit Electrical

Voltage/phase/hertz 208-230/60/3 MCA 42.00 A MOP 50.00 A

Capacity

Net Total 89.55 MBh

Controls

Unit Controls Microprocessor controls 3ph

Cooling Section

Entering Dry Bulb 80.00 F Entering Wet Bulb 67.00 F Gross Total 92.00 MBh Ambient Temp 95.00 F Gross Sensible 68.63 MBh Leaving Coil Dry Bulb 58.82 F Leaving Coil Wet Bulb 57.10 F Net Sensible 66.18 MBh Leaving Unit Dry Bulb 59.89 F Fan Motor Heat 2.45 MBh Leaving Unit Wet Bulb 57.52 F Refrig Charge-circuit 1 5.5 lb Refrigeration System Options Refrig Charge-circuit 2 4.2 lb Leaving Dew Point 55.99 F

Heating Section

Heat Type Gas Heat **Heating Stages 1** Output Heating Capacity 96.00 MBh Output Heating Capacity with Fan 98.45 MBh Heating EAT 70.00 F Heating LAT 99.90 F Heating Temp Rise 29.90 F

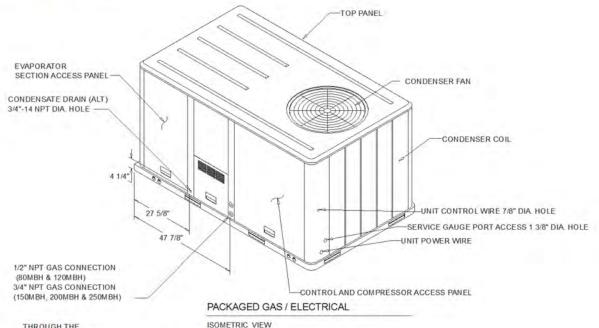
Fan Section

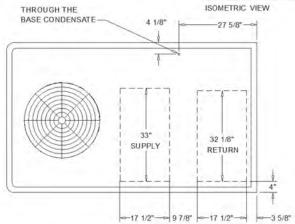
Indoor Fan Data Drive Type Variable Direct Indoor Fan Performance Airflow 3000 cfm Design ESP 0.400 in H2O Component SP 0.230 in H2O Total SP 0.630 in H2O Indoor Motor Operating Power 0.83 bhp Indoor Motor Power 0.62 kW Indoor RPM 1084 rpm Indoor Fan FLA 4.00 A

Outdoor Fan Data Type Propeller Fan Quantity 1 **Drive Type** Direct **Outdoor Fan Performance** Outdoor Motor Power 0.71 kW Condenser Fan FLA 4.00 A **Exhaust Fan Data** Type FC Centrifugal **Drive Type Direct**

Exhaust Fan Performance

Exhaust Fan FLA 7.30 A

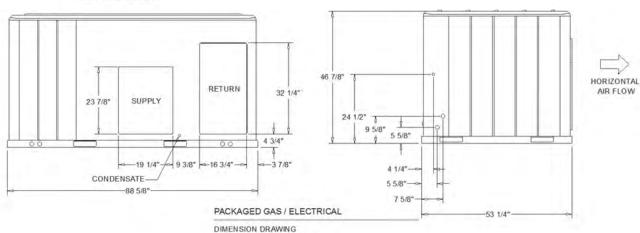

Compressor Section


Power 6.06 kW Circuit 1 RLA 15.90 A Circuit 2 RLA 10.00 A

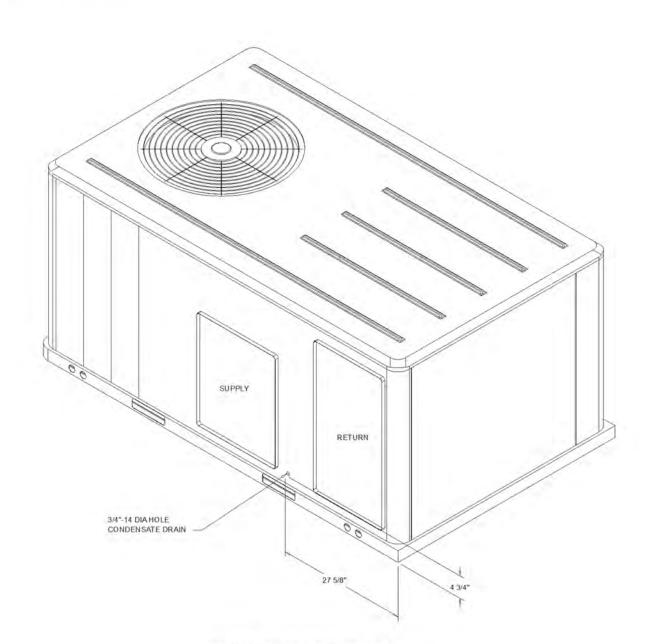
Accessories

Roof curb adapter Curb adapter Voyager baycurb022b

2019-02-14 02:07:44Z



NOTES:


- 1. THRU -THE -BASE ELECTRICAL IS NOT STANDARD ON ALL UNITS.
- 2. VERIFY ALL DIMENSIONS WITH INSTALLER DOCUMENTS BEFORE INSTALLATION.

PLAN VIEW UNIT

DIMENSION DRAWING

2019-02-14 02:07:44Z Page 2 of 8

ISOMETRIC-PACKAGED COOLING

ELECTRICAL / GENERAL DATA

GENERAL (2)(4)(6)						HEATING PERFORMANC	E	
Model: Unit Operating Voltage: Unit Primary Voltage: Unit Secondary Voltag Unit Hertz: Unit Phase:		YHC092F 187-253 208 230 60 3	MCA: MFS: MCB:	N/A		HEATING - GENERAL DATA Heating Model: Heating Input (BTU); Heating Output (BTU); No. Burmers: No. Stages	Low 120,000 96,000 3	
EER						No. Stages	1	
Standard Motor			Field In	stalled Oversized Motor	Ш	Gas Inlet Pressure		
MCA: MFS: MCB:		42.0 50.0 50.0	MCA: MFS: MCB:	N/A		Natural Gas (Min/Max): LP (Min/Max) Gas Pipe Connection Size:	4.5/14 11"/14" 1/2"	
INDOOR MOTOR								
Standard Motor				Oversized Motor			Field Installed Oversize	ed Motor
Number: Horsepower: Motor Speed (RPM): Phase Full Load Amps: Locked Rotor Amps:	1 2.75 - 3 7.3			Number: Horsepower: Motor Speed (RPM): Phase Full Load Amps: Locked Rotor Amps:	N/A N/A N/A N/A N/A		Number: Horsepower: Motor Speed (RPM): Phase Full Load Amps: Locked Rotor Amps:	N/A N/A N/A N/A N/A
COMPRESSOR	Circuit 1/2					OUTDOOR MOTOR		
Number: Horsepower: Phase; Rated Load Amps: Locked Rotor Amps:	2 4.1/2.4 3 15.9/10.0 110.0/71.0					Number: 1 Horsepower: 0.75 Motor Speed (RPM): 1100 Phase: 1 Full Load Amps: 4.0 Locked Rotor Amps: 9.3		
POWER EXHAUST (Field Installed Power		Y (3)		FILTERS			REFRIGERANT (2)	
Phase: Horsepower: Motor Speed (RPM): Full Load Amps: Locked Rotor Amps:	1 0.87 1075 5.7 13.6			Type: Furnished: Number Recommended	Yes 4	owaway 25"x2"	Type R-410 Factory Charge Circuit #1 5.5 lb Circuit #2 4.2 lb	

NOTES:

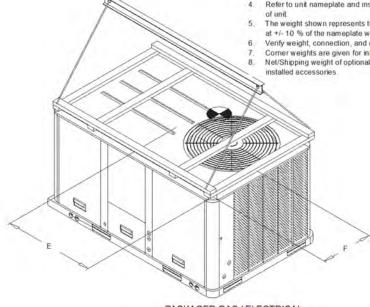
- 1. Maximum (HACR) Circuit Breaker sizing is for installations in the United States only.
 2. Refrigerant charge is an approximate value. For a more precise value, see unit nameplate and service instructions.
 3. Value does not include Power Exhaust Accessory.
 4. Value includes oversized motor.

- Value does not include Power Exhaust Accessory.
 EER is rated at AHRI conditions and in accordance with DOE test procedures.

2019-02-14 02:07:44Z Page 4 of 8

(C) (B) PACKAGED GAS / ELECTRICAL

CORNER WEIGHT

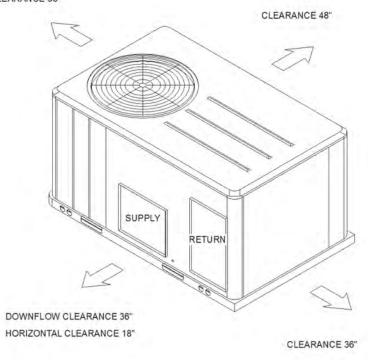

INSTALLED ACCESSORIES NET WEIGHT DATA

ACCESSOR	RY						WEIGHTS
ECONOMIZ	ER					36.0	lb
MOTORIZE	D OUTSIDE A	R DAMP	ER				
MANUAL O	UTSIDE AIR D	AMPER					
BAROMETE	RIC RELIEF						
OVERSIZE	DMOTOR						
BELT DRIV	EMOTOR						
POWER EX	HAUST					80.08	lb
THROUGH							
UNIT MOU	NTED CIRCUIT	BREAK	ER (FIOPS)				
UNIT MOUN	NTED DISCON	NECT (F	IOPS)				
POWERED	CONVENIENC	CE OUTL	ET (FIOPS)				
HINGED DO	OORS (FIOPS)					12.0	lb
HAIL GUAR	D						
SMOKE DE	TECTOR, SUF	PLY / RI	ETURN				
NOVAR CO	NTROL						
STAINLESS	STEELHEAT	EXCHAI	NGER				
REHEAT							
ROOF CUR	В						
BASIC UNIT	WEIGHTS		CORNER	WEIGHT	S	CENTER O	F GRAVITIY
SHIPPING	NET	(A)	340.0 lb	(c)	249.0 lb	(E) LENGHT	(F) WIDTI
1124.0 lb	1026.0 lb	(B)	233.0 lb	0	204.0 lb	41"	23"

NOTE:

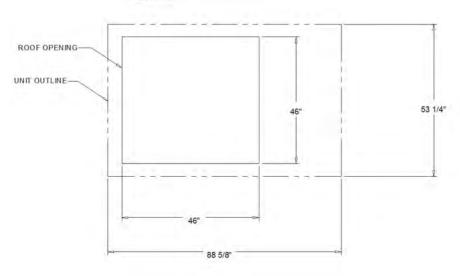
- All weights are approximate. Weights for options that are not list refer to Installation guide.
- The actual weight are listed on the unit nameplate.
- Refer to unit nameplate and installation guide for weights before scheduling transportation and installation
- The weight shown represents the typical unit operating weight for the configuration selected. Estimated at +/- 10 % of the nameplate weight.
- Verify weight, connection, and all dimension with installer documents before installation.
- Comer weights are given for information only.

 Net/Shipping weight of optional accessories should be added to unit weight when ordering factory or field installed accessories.


PACKAGED GAS / ELECTRICAL

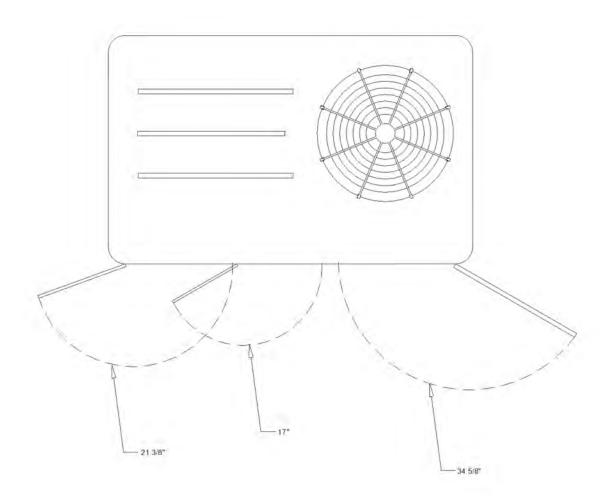
RIGGING AND CENTER OF GRAVITY

2019-02-14 02:07:44Z Page 5 of 8


CLEARANCE FROM TOP OF UNIT 72"

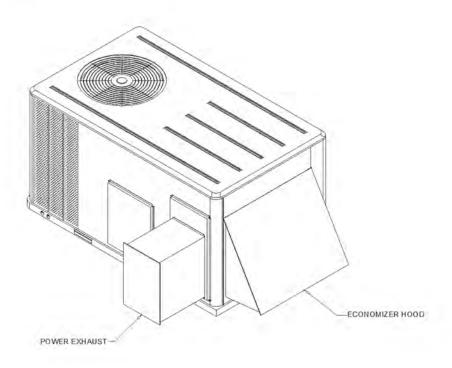
CLEARANCE 36"

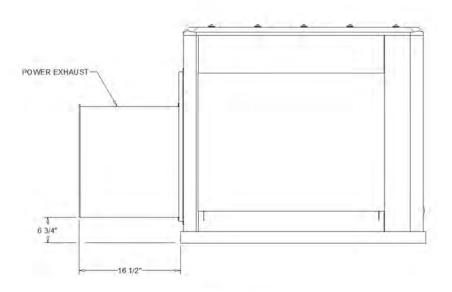
PACKAGED GAS/ELECTRIC


CLEARANCE

PACKAGED GAS/ELECTRIC

DOWNFLOW TYPICAL ROOF OPENING


2019-02-14 02:07:44Z Page 6 of 8



SWING DIAMETER - HINGED DOOR(S) OPTION
ACCESSORY

2019-02-14 02:07:44Z Page 7 of 8

POWER EXHAUST AND HOOD
ACCESSORY

Trane Precedent Gas/Electric Packaged Rooftop

Unit Over	view - YH	C120F3RI	_A**G0C0000	00000000	00000000	0000				
Application	Unit Size	Supp	oly Fan	Extern	al Dimensio	ns (in.)	We	ight	EER	IEER/SEER
DX cooling, gas heat	10 Ton	Airflow	External Static Pressure	Height	Width	Length	Minimum	Maximum	12.4 EER	14.70
2.00.00.00		4000 cfm	0.430 in H2O	4.24 ft	5.27 ft	8.31 ft	1259.0 lb	1608.0 lb		

Unit Features

Fresh Air Selection Econ-comp enthalpy 0-100% 3ph

Unit Electrical

Voltage/phase/hertz 208-230/60/3 MCA 48.00 A MOP 60.00 A

Controls

Unit Controls Microprocessor controls 3ph

Cooling Section

Entering Dry Bulb 80.00 F Entering Wet Bulb 67.00 F Ambient Temp 95.00 F Leaving Coil Dry Bulb 58.23 F Leaving Coil Wet Bulb 57.62 F Leaving Unit Dry Bulb 59.18 F Leaving Unit Wet Bulb 57.98 F **Refrigeration System Options**

Leaving Dew Point 57.23 F

Capacity

Gross Total 113.97 MBh Gross Sensible 94.06 MBh

Net Total 111.38 MBh

Net Sensible 91.47 MBh

Fan Motor Heat 2.59 MBh

Refrig Charge-circuit 1 7.1 lb

Refrig Charge-circuit 2 5.0 lb

Heating Section

Heat Type Gas Heat **Heating Stages 2** Output Heating Capacity 120.00 MBh Output Heating Capacity with Fan 122.59 MBh Heating EAT 70.00 F Heating LAT 98.10 F Heating Temp Rise 28.10 F

Fan Section

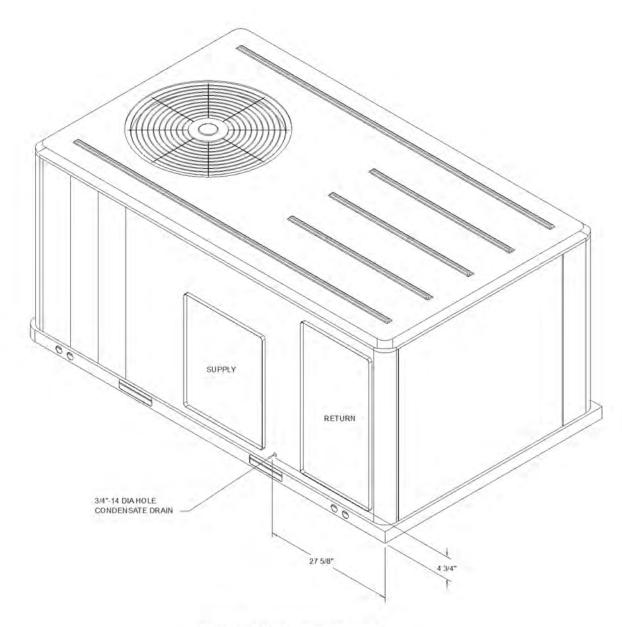
an occurr		
Indoor I	Fan Data	
Drive Type	Variable Direct	
Indoor Fan I	Performance	=0
Airflow	4000 cfm	
Design ESP	0.430 in H2O	
Component SP	0.410 in H2O	Oi
Total SP	0.840 in H2O	(
Indoor Motor Operating Power	0.88 bhp	
Indoor Motor Power	0.65 kW	
Indoor RPM	1320 rpm	
Indoor Fan FLA	2.70 A	
700710101010101010101		0.0

Outdoor Fan Data Type Propeller Fan Quantity 1 **Drive Type** Direct Outdoor Fan Performance utdoor Motor Power 0.53 kW

Condenser Fan FLA 2.70 A **Exhaust Fan Data**

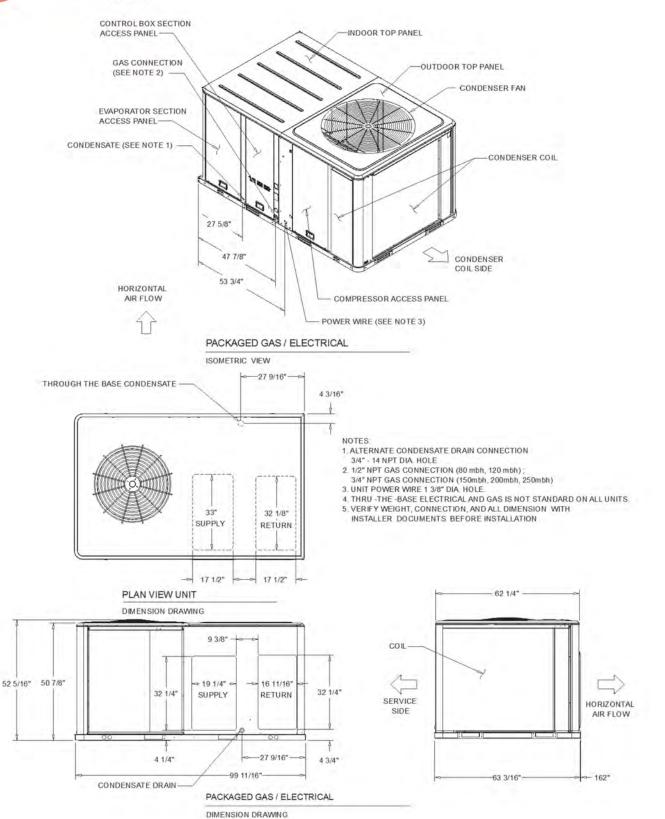
> Type FC Centrifugal **Drive Type Direct**

Exhaust Fan Performance


Exhaust Fan FLA 7.30 A

Compressor Section

Accessories


Roof curb adapter Curb adapter Voyager baycurb025b

Power 7.80 kW Circuit 1 RLA 19.60 A Circuit 2 RLA 13.20 A

ISOMETRIC-PACKAGED COOLING

2019-02-14 02:07:44Z Page 3 of 8

ELECTRICAL / GENERAL DATA

GENERAL (2)(4)(6)			0			HEATING PERFORMANC	-	
Model: Unit Operating Voltage: Unit Primary Voltage: Unit Secondary Voltag Unit Hertz: Unit Phase:		YHC120F 187-253 208 230 60 3	MCA: MFS: MCB:	N/A N/A N/A N/A		HEATING - GENERAL DATA Heating Model: Heating Input (BTU): Heating Output (BTU): No. Burners: No. Stages	Low 150,000/105,000 120,000/84,000 3	
EER						No. Stages	2	
Standard Motor			Field In	stalled Oversized Motor	1	Gas Inlet Pressure		
MCA: MFS: MCB:		48.0 60.0 60.0	MCA: MFS: MCB:	N/A N/A N/A		Natural Gas (Min/Max): LP (Min/Max) Gas Pipe Connection Size:	4.5/14 10"/14" 3/4"	
INDOOR MOTOR								
Standard Motor				Oversized Motor			Field Installed Oversize	ed Motor
Number: Horsepower: Motor Speed (RPM): Phase Full Load Amps: Locked Rotor Amps:	1 2.75 - 3 7.3			Number: Horsepower: Motor Speed (RPM): Phase Full Load Amps: Locked Rotor Amps:	N/A N/A N/A N/A N/A		Number: Horsepower: Motor Speed (RPM): Phase Full Load Amps: Locked Rotor Amps:	N/A N/A N/A N/A N/A N/A
COMPRESSOR	Circuit 1/2					OUTDOOR MOTOR		
Number: Horsepower: Phase; Rated Load Amps: Locked Rotor Amps:	2 5,1/3.0 3 19,6/13.2 136,0/88.0					Number: 1 Horsepower: 0.75 Motor Speed (RPM): 1100 Phase: 3 Full Load Amps: 2,7 Locked Rotor Amps: 9,8		
POWER EXHAUST (Field Installed Power	210 000000	(3)		FILTERS			REFRIGERANT (2)	
Phase: Horsepower: Motor Speed (RPM): Full Load Amps: Locked Rotor Amps:	1 0.87 1075 5.7 13.6			Type: Furnished: Number Recommended	Yes 3/2 200		Factory Charge Circuit #1 7.1 lb Circuit #2 5.0 lb	

NOTES:

- 1. Maximum (HACR) Circuit Breaker sizing is for installations in the United States only.
 2. Refrigerant charge is an approximate value. For a more precise value, see unit nameplate and service instructions.
 3. Value does not include Power Exhaust Accessory.
 4. Value includes oversized motor.

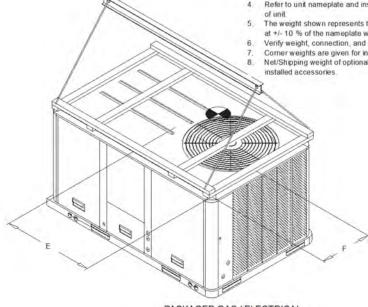
- Value does not include Power Exhaust Accessory.
 EER is rated at AHRI conditions and in accordance with DOE test procedures.

2019-02-14 02:07:44Z Page 4 of 8

(C) (B)

PACKAGED GAS / ELECTRICAL

CORNER WEIGHT

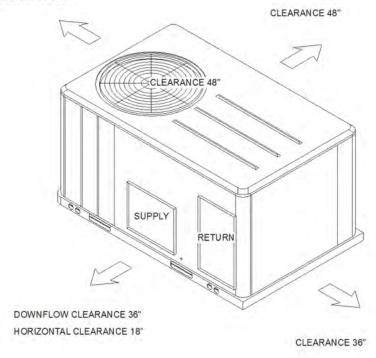

INSTALLED ACCESSORIES NET WEIGHT DATA

ACCESSOR	SA					1	WEIGHTS		
ECONOMIZ	ER					36.0	lb		
MOTORIZE	D OUTSIDE A	R DAMP	ER						
MANUAL O	UTSIDE AIR D	AMPER							
BAROMETE	RIC RELIEF								
OVERSIZE	MOTOR								
BELT DRIV	MOTOR								
POWER EX	HAUST					80.0	lb		
THROUGH									
ииом типи	ITED CIRCUIT	BREAK	ER (FIOPS)						
UNIT MOUN	NTED DISCON	NECT (F	IOPS)						
POWERED	CONVENIENC	E OUTL	ET (FIOPS)						
HINGED DO	OORS (FIOPS)					12.0	12.0 lb		
HAIL GUAR	D								
SMOKE DE	TECTOR, SUF	PLY/RE	ETURN						
NOVAR CO	NTROL								
STAINLESS	STEELHEAT	EXCHA	NGER						
REHEAT									
ROOF CUR	В								
BASIC UNIT	WEIGHTS		CORNER	WEIGHT	s	CENTER O	F GRAVITIY		
SHIPPING	NET	(A)	356.0 lb	(c)	289.0 lb	(E) LENGHT	(F) WIDTE		
1453.0 lb	1259.0 lb	(B)	371.0 lb	(D)	242.0 lb	54"	27"		

NOTE:

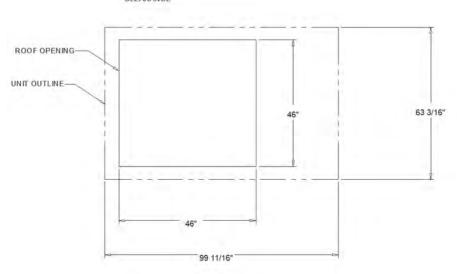
- All weights are approximate. Weights for options that are not list refer to Installation guide.
- The actual weight are listed on the unit nameplate.
- Refer to unit nameplate and installation guide for weights before scheduling transportation and installation
- The weight shown represents the typical unit operating weight for the configuration selected. Estimated at +/- 10 % of the nameplate weight.
- Verify weight, connection, and all dimension with installer documents before installation.
- Comer weights are given for information only.

 Net/Shipping weight of optional accessories should be added to unit weight when ordering factory or field installed accessories.


PACKAGED GAS / ELECTRICAL

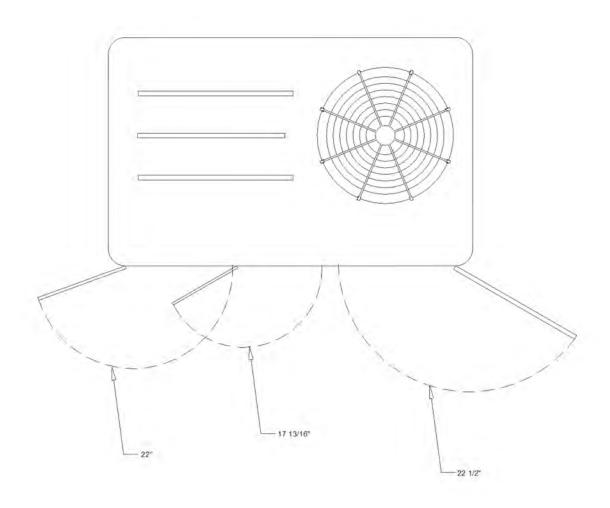
RIGGING AND CENTER OF GRAVITY

2019-02-14 02:07:44Z Page 5 of 8



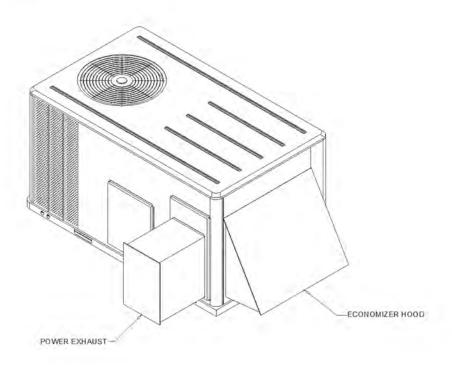
CLEARANCE 36"

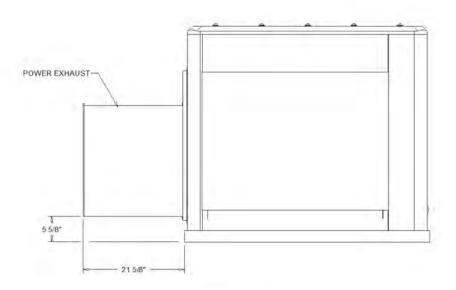
PACKAGED GAS/ELECTRIC


CLEARANCE

PACKAGED GAS/ELECTRIC

DOWNFLOW TYPICAL ROOF OPENING


2019-02-14 02:07:44Z Page 6 of 8



SWING DIAMETER - HINGED DOOR(S) OPTION
ACCESSORY

2019-02-14 02:07:44Z Page 7 of 8

POWER EXHAUST AND HOOD
ACCESSORY

Trane Precedent Gas/Electric Packaged Rooftop

Unit Over	view - YH	C120F3RI	_A**G0C0000	00000000	00000000	0000				
Application	Unit Size	Supp	oly Fan	Extern	nal Dimensio	ns (in.)	We	ight	EER	IEER/SEER
DX cooling, gas heat	10 Ton	Airflow	External Static Pressure	Height	Width	Length	Minimum	Maximum	12.4 EER	14.70
2.000.000		4000 cfm	0.400 in H2O	4.24 ft	5.27 ft	8.31 ft	1259.0 lb	1608.0 lb		

Unit Features

Fresh Air Selection Econ-comp enthalpy 0-100% 3ph

Unit Electrical

Voltage/phase/hertz 208-230/60/3 MCA 48.00 A MOP 60.00 A

Controls

Unit Controls Microprocessor controls 3ph

Cooling Section

Entering Dry Bulb 80.00 F Entering Wet Bulb 67.00 F Ambient Temp 95.00 F Leaving Coil Dry Bulb 58.23 F Leaving Coil Wet Bulb 57.62 F Leaving Unit Dry Bulb 59.17 F Leaving Unit Wet Bulb 57.97 F Refrigeration System Options Leaving Dew Point 57.23 F

Capacity

Gross Total 113.97 MBh Gross Sensible 94.06 MBh Net Total 111.42 MBh Net Sensible 91.51 MBh Fan Motor Heat 2.55 MBh Refrig Charge-circuit 1 7.1 lb Refrig Charge-circuit 2 5.0 lb

Heating Section

Heat Type Gas Heat **Heating Stages 2** Output Heating Capacity 120.00 MBh Output Heating Capacity with Fan 122.55 MBh Heating EAT 70.00 F Heating LAT 98.10 F Heating Temp Rise 28.10 F

Fan Section

Indoor Fan Data Drive Type Variable Direct Indoor Fan Performance Airflow 4000 cfm Design ESP 0.400 in H2O Component SP 0.410 in H2O Total SP 0.810 in H2O Indoor Motor Operating Power 0.86 bhp Indoor Motor Power 0.64 kW Indoor RPM 1312 rpm Indoor Fan FLA 2.70 A

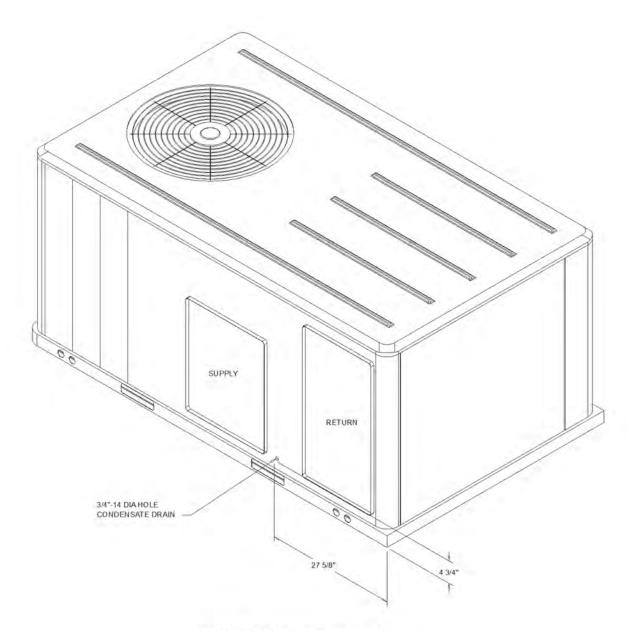
Outdoor Fan Data

Type Propeller Fan Quantity 1 **Drive Type Direct Outdoor Fan Performance**

Outdoor Motor Power 0.53 kW Condenser Fan FLA 2.70 A

> **Exhaust Fan Data** Type FC Centrifugal **Drive Type Direct**

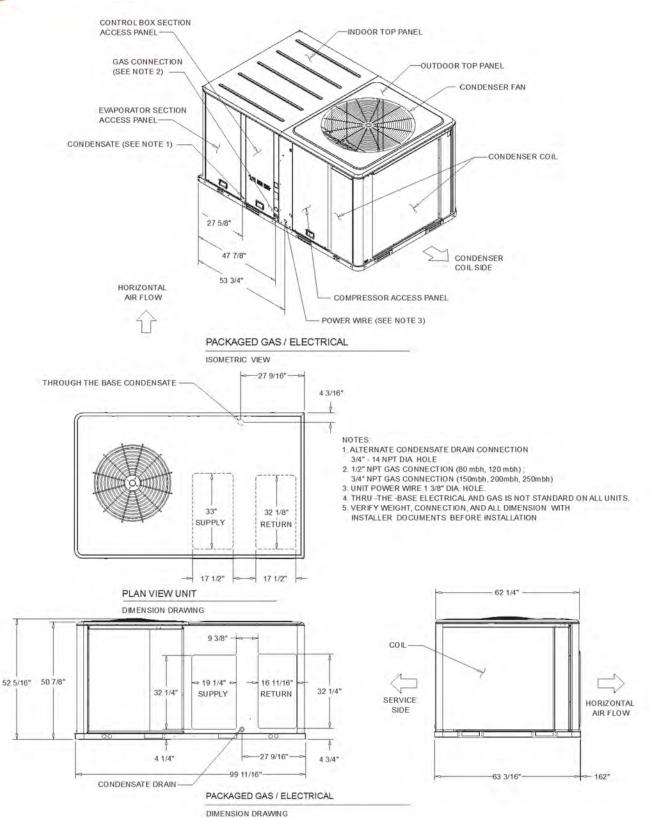
Exhaust Fan Performance Exhaust Fan FLA 7.30 A


Compressor Section

Power 7.80 kW Circuit 1 RLA 19.60 A Circuit 2 RLA 13.20 A

Accessories

Roof curb adapter Curb adapter Voyager baycurb025b


2019-02-14 02:07:45Z Page 1 of 8

ISOMETRIC-PACKAGED COOLING

2019-02-14 02:07:45Z Page 2 of 8

2019-02-14 02:07:45Z Page 3 of 8

ELECTRICAL / GENERAL DATA

GENERAL (2)(4)(6)	-	TWO IS	Over	red Motor		HEATING PERFORMANC		
Model: Unit Operating Voltage: Unit Primary Voltage: Unit Secondary Voltag Unit Hertz: Unit Phase:	187		MCA: MFS:	N/A N/A		HEATING - GENERAL DATA Heating Model: Heating Input (BTU): Heating Output (BTU): No. Burmers:	Low 150,000/105,000 120,000/84,000 3	
EER						No. Stages	2	
Standard Motor			Field Ins	stalled Oversized Motor		Gas Inlet Pressure		
MCA: MFS: MCB:	48.0 60.0 60.0)	MFS:	N/A N/A N/A		Natural Gas (Min/Max): LP (Min/Max) Gas Pipe Connection Size:	4.5/14 10"/14" 3/4"	
INDOOR MOTOR								
Standard Motor				Oversized Motor			Field Installed Oversize	ed Motor
Number: Horsepower: Motor Speed (RPM): Phase Full Load Amps: Locked Rotor Amps:	1 2.75 3 7.3			Number: Horsepower: Motor Speed (RPM): Phase Full Load Amps: Locked Rotor Amps:	N/A N/A N/A N/A N/A		Number: Horsepower: Motor Speed (RPM): Phase Full Load Amps: Locked Rotor Amps:	N/A N/A N/A N/A N/A N/A
COMPRESSOR	Circuit 1/2					OUTDOOR MOTOR		
Number: Horsepower: Phase; Rated Load Amps: Locked Rotor Amps:	2 5.1/3.0 3 19.6/13.2 136.0/88.0					Number: 1 Horsepower: 0.75 Motor Speed (RPM): 1100 Phase: 3 Full Load Amps: 2.7 Locked Rotor Amps: 9.8		
POWER EXHAUST	ACCESSORT	(3)		FILTERS			REFRIGERANT (2)	
(Field Installed Power	Exhaust)						Type R-410	
Phase: Horsepower: Motor Speed (RPM): Full Load Amps: Locked Rotor Amps:	1 0.87 1075 5.7 13.6			Type: Furnished: Number Recommended	Yes 3/2 20"x	waway 25"x2" 30"x2"	Factory Charge Circuit #1 7.1 lb Circuit #2 5.0 lb	

NOTES:

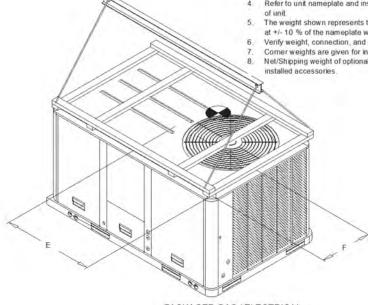
- 1. Maximum (HACR) Circuit Breaker sizing is for installations in the United States only.
 2. Refrigerant charge is an approximate value. For a more precise value, see unit nameplate and service instructions.
 3. Value does not include Power Exhaust Accessory.
 4. Value includes oversized motor.

- Value does not include Power Exhaust Accessory.
 EER is rated at AHRI conditions and in accordance with DOE test procedures.

2019-02-14 02:07:45Z Page 4 of 8

(C) (B) PACKAGED GAS / ELECTRICAL

CORNER WEIGHT

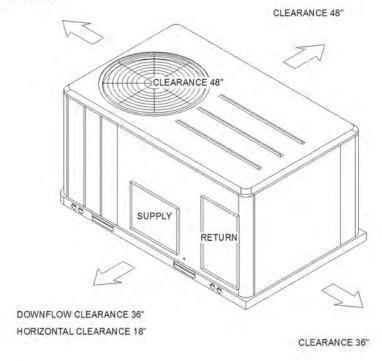

INSTALLED ACCESSORIES NET WEIGHT DATA

ACCESSO	RY						WEIGHTS
ECONOMIZ	ER					36.0	lb
MOTORIZE	D OUTSIDE A	R DAMP	ER				
MANUAL O	UTSIDE AIR D	AMPER					
BAROMETE	RIC RELIEF						
OVERSIZE	DMOTOR						
BELT DRIV	EMOTOR						
POWER EX	HAUST					80.08	lb
THROUGH	T THE BASE E	LECTRI	CAL/GAS (FIC	PS)			
UNIT MOUI	NTED CIRCUIT	BREAK	ER (FIOPS)				
UNIT MOUI	NTED DISCON	NECT (F	IOPS)				
POWERED	CONVENIENC	E OUTL	ET (FIOPS)				
HINGED DO	OORS (FIOPS)					12.0	(b
HAIL GUAR	D						
SMOKE DE	TECTOR, SUF	PLY / RI	ETURN				
NOVAR CO	NTROL						
STAINLESS	STEELHEAT	EXCHA	NGER				
REHEAT							
ROOF CUR	В						
BASIC UNI	WEIGHTS		CORNER	WEIGHT	S	CENTER	F GRAVITIY
SHIPPING	NET	(A)	356.0 lb	(c)	289.0 lb	(E) LENGH	
1453.0 lb	1259.0 lb	(B)	371.0 lb	0	242.0 lb	54"	27"

NOTE:

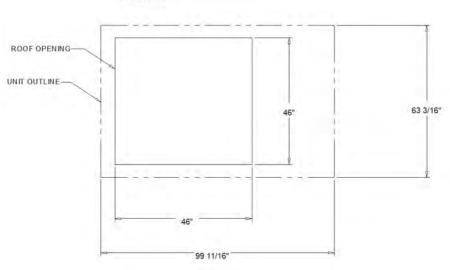
- All weights are approximate. Weights for options that are not list refer to Installation guide.
- The actual weight are listed on the unit nameplate.
- Refer to unit nameplate and installation guide for weights before scheduling transportation and installation
- The weight shown represents the typical unit operating weight for the configuration selected. Estimated at +/- 10 % of the nameplate weight.
- Verify weight, connection, and all dimension with installer documents before installation.
- Comer weights are given for information only.

 Net/Shipping weight of optional accessories should be added to unit weight when ordering factory or field installed accessories.

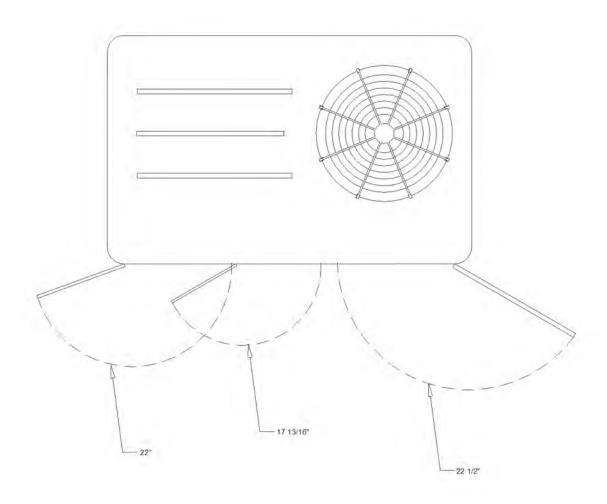

PACKAGED GAS / ELECTRICAL

RIGGING AND CENTER OF GRAVITY

2019-02-14 02:07:45Z Page 5 of 8



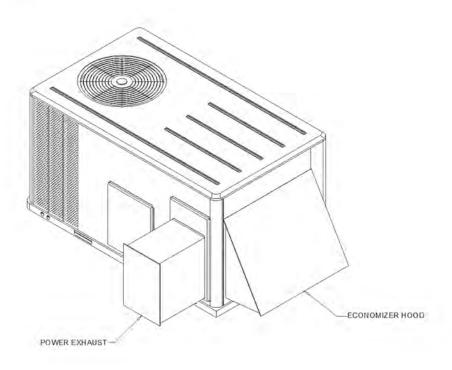
PACKAGED GAS/ELECTRIC

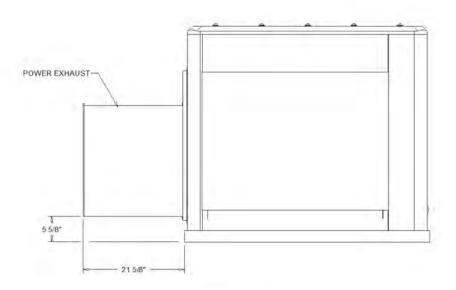

CLEARANCE

PACKAGED GAS/ELECTRIC

DOWNFLOW TYPICAL ROOF OPENING

2019-02-14 02:07:45Z Page 6 of 8




SWING DIAMETER - HINGED DOOR(S) OPTION

ACCESSORY

2019-02-14 02:07:45Z Page 7 of 8

POWER EXHAUST AND HOOD
ACCESSORY

Trane Precedent Gas/Electric Packaged Rooftop

Unit Ove	rview - YHO	092F3RI	_A**G0C0000	00000000	00000000	0000				
Application	Unit Size	Supp	oly Fan	Extern	al Dimensio	ns (in.)	We	ight	EER	IEER/SEER
DX cooling, 7.5 gas heat con	7.5 Ton Dual compressor	Airflow	External Static Pressure	Height	Width	Length	Minimum	Maximum	12.6 EER	14.50
3	THE CONTRACTOR	3000 cfm	0.450 in H2O	3.91 ft	4.44 ft	7.39 ft	1026.0 lb	1291.0 lb		

Unit Features

Fresh Air Selection Econ-comp enthalpy 0-100% 3ph

Unit Electrical

Voltage/phase/hertz 208-230/60/3 MCA 42.00 A MOP 50.00 A

Controls

Unit Controls Microprocessor controls 3ph

Cooling Section

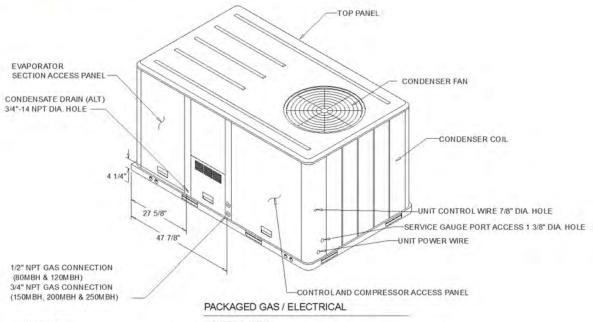
Entering Dry Bulb 80.00 F Capacity Entering Wet Bulb 67.00 F Gross Total 92.00 MBh Gross Sensible 68.63 MBh Ambient Temp 95.00 F Net Total 89.44 MBh Leaving Coil Dry Bulb 58.82 F Leaving Coil Wet Bulb 57.10 F Net Sensible 66.06 MBh Leaving Unit Dry Bulb 59.93 F Fan Motor Heat 2.56 MBh Leaving Unit Wet Bulb 57.53 F Refrig Charge-circuit 1 5.5 lb **Refrigeration System Options** Refrig Charge-circuit 2 4.2 lb Leaving Dew Point 55.99 F

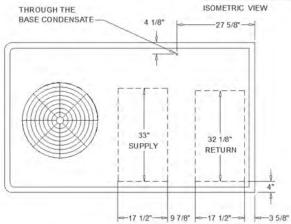
Heating Section

Heat Type Gas Heat
Heating Stages 1
Output Heating Capacity 96.00 MBh
Output Heating Capacity with Fan 98.56 MBh
Heating EAT 70.00 F
Heating LAT 99.90 F
Heating Temp Rise 29.90 F

Fan Section

Indoor Fan Data **Outdoor Fan Data** Drive Type Variable Direct Type Propeller Fan Quantity 1 Indoor Fan Performance **Drive Type** Direct Airflow 3000 cfm Design ESP 0.450 in H2O Outdoor Fan Performance Component SP 0.230 in H2O Outdoor Motor Power 0.71 kW Total SP 0.680 in H2O Condenser Fan FLA 4.00 A Indoor Motor Operating Power 0.87 bhp **Exhaust Fan Data** Indoor Motor Power 0.65 kW Type FC Centrifugal Indoor RPM 1100 rpm **Drive Type Direct** Indoor Fan FLA 4.00 A **Exhaust Fan Performance** Exhaust Fan FLA 7.30 A

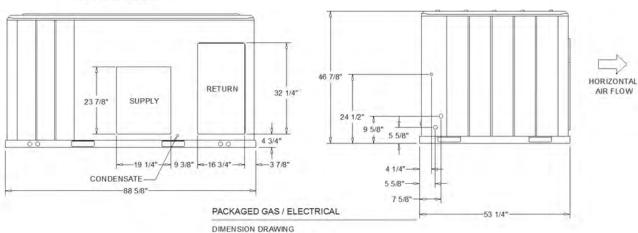

Accessories


Roof curb adapter Curb adapter Voyager baycurb022b

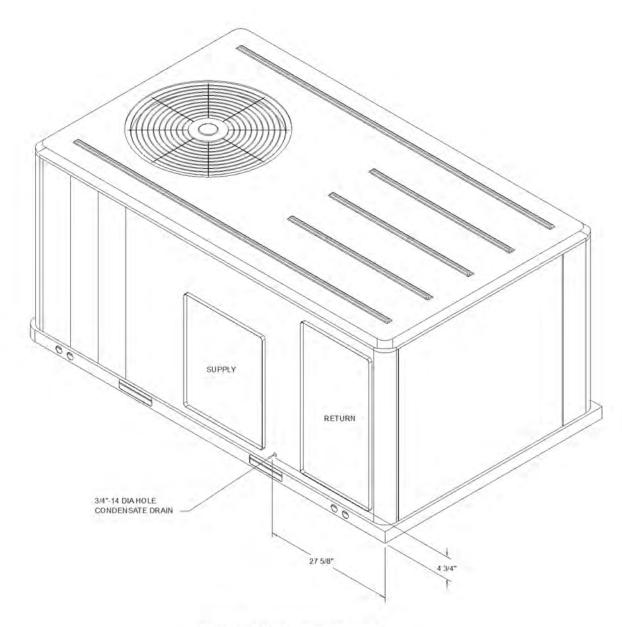
Compressor Section

Power 6.06 kW Circuit 1 RLA 15.90 A Circuit 2 RLA 10.00 A

2019-02-14 02:07:46Z Page 1 of 8



NOTES:


- 1. THRU -THE -BASE ELECTRICAL IS NOT STANDARD ON ALL UNITS.
- 2. VERIFY ALL DIMENSIONS WITH INSTALLER DOCUMENTS BEFORE INSTALLATION.

PLAN VIEW UNIT

DIMENSION DRAWING

2019-02-14 02:07:46Z Page 2 of 8

ISOMETRIC-PACKAGED COOLING

2019-02-14 02:07:46Z Page 3 of 8

ELECTRICAL / GENERAL DATA

GENERAL (2)(4)(6)						HEATING PERFORMANCE	E	
Model: Unit Operating Voltage Unit Primary Voltage: Unit Secondary Voltag Unit Hertz: Unit Phase:		YHC092F 187-253 208 230 60 3	MCA: MFS: MCB:	N/A		HEATING - GENERAL DATA Heating Model; Heating Input (BTU); Heating Output (BTU); No. Burners:	Low 120,000 96,000 3	
EER						No. Stages	1	
Standard Motor			Field In	stalled Oversized Motor		Gas Inlet Pressure		
MCA: MFS: MCB:		42.0 50.0 50.0	MCA: MFS: MCB:	N/A N/A N/A		Natural Gas (Min/Max): LP (Min/Max) Gas Pipe Connection Size:	4.5/14 11"/14" 1/2"	
INDOOR MOTOR								
Standard Motor				Oversized Motor			Field Installed Oversize	d Motor
Number: Horsepower: Motor Speed (RPM): Phase Full Load Amps: Locked Rotor Amps:	1 2.75 - 3 7.3			Horsepower: Motor Speed (RPM): Phase Full Load Amps:	N/A N/A N/A N/A N/A		Number: Horsepower. Motor Speed (RPM): Phase Full Load Amps: Locked Rotor Amps:	N/A N/A N/A N/A N/A N/A
COMPRESSOR	Circuit 1/2					OUTDOOR MOTOR		
Number: Horsepower: Phase; Rated Load Amps: Locked Rotor Amps:	2 4.1/2.4 3 15.9/10.0 110.0/71.0					Number: 1 Horsepower: 0.75 Motor Speed (RPM): 1100 Phase: 1 Full Load Amps: 4,0 Locked Rotor Amps: 9,3		
POWER EXHAUST (Field Installed Power	715 000000	Y (3)		FILTERS			REFRIGERANT (2) Type R-410	
Phase: Horsepower: Motor Speed (RPM): Full Load Amps: Locked Rotor Amps:	1 0.87 1075 5.7 13.6			Furnished: Number	Yes 4	owaway	Factory Charge Circuit #1 5.5 lb Circuit #2 4.2 lb	

NOTES:

- 1. Maximum (HACR) Circuit Breaker sizing is for installations in the United States only.
 2. Refrigerant charge is an approximate value. For a more precise value, see unit nameplate and service instructions.
 3. Value does not include Power Exhaust Accessory.
 4. Value includes oversized motor.

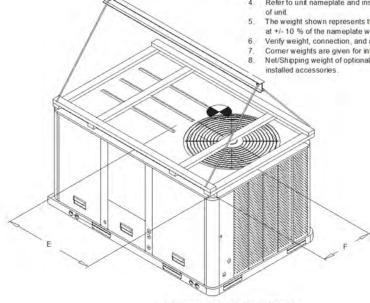
- Value does not include Power Exhaust Accessory.
 EER is rated at AHRI conditions and in accordance with DOE test procedures.

2019-02-14 02:07:46Z Page 4 of 8

(C) (B)

PACKAGED GAS / ELECTRICAL

CORNER WEIGHT

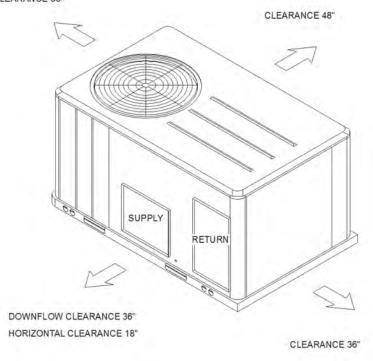

INSTALLED ACCESSORIES NET WEIGHT DATA

ACCESSOR	RY						WEIGHTS					
ECONOMIZ	ER					36.0) lb					
MOTORIZE	NOTORIZED OUTSIDE AIR DAMPER											
MANUALO	UTSIDE AIR D	AMPER										
BAROMETE	RIC RELIEF											
OVERSIZE	MOTOR											
BELT DRIVE	MOTOR											
POWER EX	HAUST					80.0) lb					
THROUGH	THE BASE E	LECTRI	CAL/GAS (FIC	PS)								
UNIT MOUN	TED CIRCUIT	BREAK	ER (FIOPS)									
UNIT MOUN	TED DISCON	NECT (F	IOPS)									
POWERED	CONVENIENC	E OUTL	ET (FIOPS)									
HINGED DO	ORS (FIOPS)					12.0) (b					
HAIL GUAR	D											
SMOKE DE	TECTOR, SUF	PLY / RI	ETURN									
NOVAR CO	NTROL											
STAINLESS	STEELHEAT	EXCHAI	NGER									
REHEAT												
ROOF CUR	В											
BASIC UNIT	WEIGHTS		CORNER	WEIGHT	S	CENTER	OF GRAVITIY					
SHIPPING	NET	A	340.0 lb	(C)	249.0 lb	(E) LENGH	T (F) WIDT					
1124.0 lb	1026.0 lb	(B)	233.0 lb	(D)	204.0 lb	41"	23"					

NOTE:

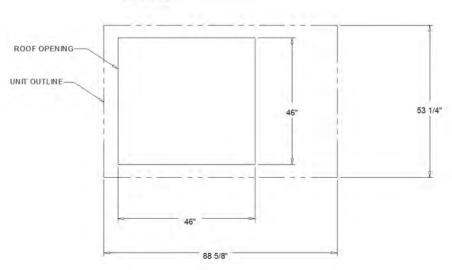
- All weights are approximate. Weights for options that are not list refer to Installation guide.
- The actual weight are listed on the unit nameplate.
- Refer to unit nameplate and installation guide for weights before scheduling transportation and installation
- The weight shown represents the typical unit operating weight for the configuration selected. Estimated at +/- 10 % of the nameplate weight.
- Verify weight, connection, and all dimension with installer documents before installation.
- Comer weights are given for information only.

 Net/Shipping weight of optional accessories should be added to unit weight when ordering factory or field installed accessories.

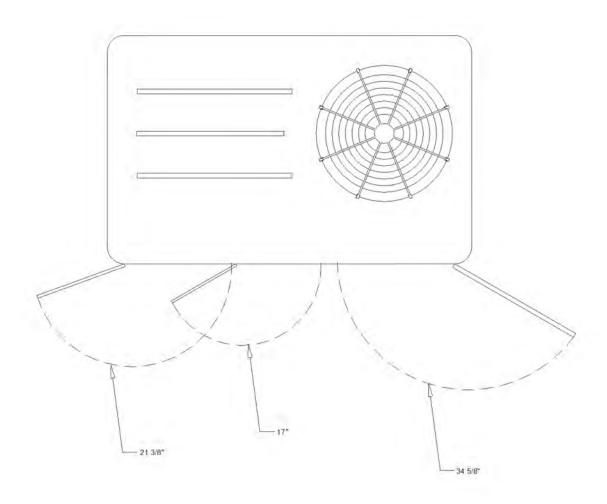

PACKAGED GAS / ELECTRICAL

RIGGING AND CENTER OF GRAVITY

2019-02-14 02:07:46Z Page 5 of 8


CLEARANCE FROM TOP OF UNIT 72"

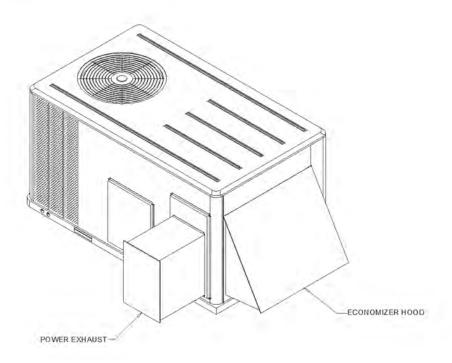
PACKAGED GAS/ELECTRIC

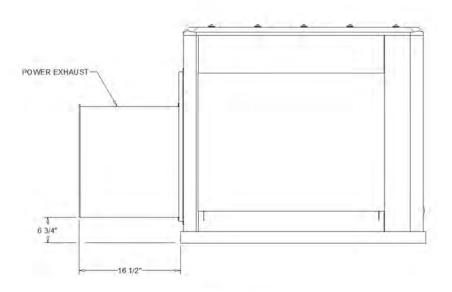

CLEARANCE

PACKAGED GAS/ELECTRIC

DOWNFLOW TYPICAL ROOF OPENING

2019-02-14 02:07:46Z Page 6 of 8




SWING DIAMETER - HINGED DOOR(S) OPTION

ACCESSORY

2019-02-14 02:07:46Z Page 7 of 8

POWER EXHAUST AND HOOD
ACCESSORY

Trane Precedent Gas/Electric Packaged Rooftop

Unit Overview - YHC092F3RLA**G0C0000000000000000000000000000000000												
Application	Unit Size	Supply Fan		External Dimensions (in.)			Weight		EER	IEER/SEER		
	7.5 Ton Dual compressor	Airflow	External Static Pressure	Height	Width	Length	Minimum	Maximum	12.6 EER	14.50		
		3000 cfm	0.410 in H2O	3.91 ft	4.44 ft	7.39 ft	1026.0 lb	1291.0 lb				

Unit Features

Fresh Air Selection Econ-comp enthalpy 0-100% 3ph

Unit Electrical

Voltage/phase/hertz 208-230/60/3 MCA 42.00 A MOP 50.00 A

Controls

Unit Controls Microprocessor controls 3ph

Cooling Section

Entering Dry Bulb 80.00 F
Entering Wet Bulb 67.00 F
Ambient Temp 95.00 F
Leaving Coil Dry Bulb 58.82 F
Leaving Coil Wet Bulb 57.10 F
Leaving Unit Dry Bulb 59.90 F
Leaving Unit Wet Bulb 57.52 F
Refrigeration System Options
Leaving Dew Point 55.99 F

Capacity

Gross Total 92.00 MBh Gross Sensible 68.63 MBh Net Total 89.52 MBh

Net Sensible 66.15 MBh

Fan Motor Heat 2.48 MBh Refrig Charge-circuit 1 5.5 lb

Refrig Charge-circuit 2 4.2 lb

Heating Section

Heat Type Gas Heat
Heating Stages 1
Output Heating Capacity 96.00 MBh
Output Heating Capacity with Fan 98.48 MBh
Heating EAT 70.00 F
Heating LAT 99.90 F
Heating Temp Rise 29.90 F

Fan Section

Indoor Fan Data
Drive Type Variable Direct
Indoor Fan Performance
Airflow 3000 cfm
Design ESP 0.410 in H2O
Component SP 0.230 in H2O
Total SP 0.640 in H2O
Indoor Motor Operating Power 0.84 bhp
Indoor Motor Power 0.62 kW
Indoor RPM 1087 rpm
Indoor Fan FLA 4.00 A

Outdoor Fan Data

Type Propeller Fan Quantity 1

Drive Type Direct Outdoor Fan Performance

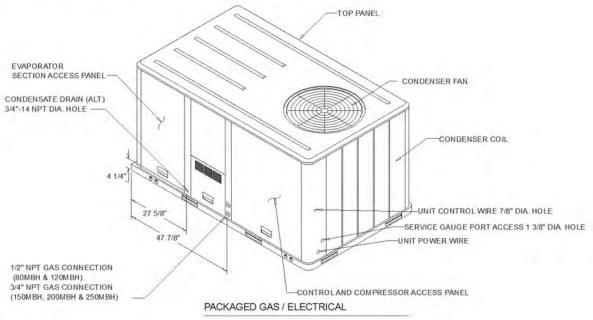
Outdoor Motor Power 0.71 kW Condenser Fan FLA 4.00 A

Exhaust Fan Data

Type FC Centrifugal

Drive Type Direct Exhaust Fan Performance

Exhaust Fan FLA 7.30 A


Compressor Section

Power 6.06 kW Circuit 1 RLA 15.90 A Circuit 2 RLA 10.00 A

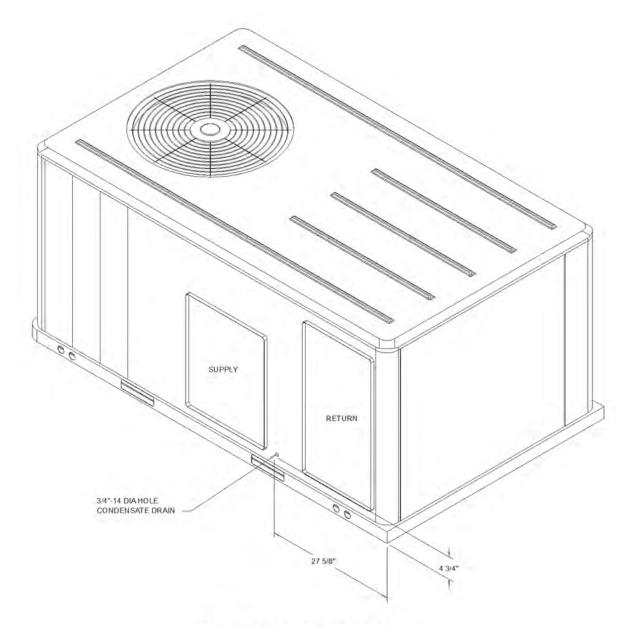
Accessories

Roof curb adapter Curb adapter Voyager baycurb022b

2019-02-14 02:07:48Z Page 1 of 8

THROUGH THE BASE CONDENSATE 4 1/8" 27 5/8" 27 5/8" 32 1/8" RETURN 4" 4" 5 -17 1/2" 9 7/8" -17 1/2" 3 5/8"

NOTES:


- 1. THRU -THE -BASE ELECTRICAL IS NOT STANDARD ON ALL UNITS.
- 2. VERIFY ALL DIMENSIONS WITH INSTALLER DOCUMENTS BEFORE INSTALLATION.

PLAN VIEW UNIT

DIMENSION DRAWING

2019-02-14 02:07:48Z Page 2 of 8

ISOMETRIC-PACKAGED COOLING

2019-02-14 02:07:48Z Page 3 of 8

ELECTRICAL / GENERAL DATA

GENERAL (2)(4)(0)				San Str.	- 1	HEATING PERFORMANCE				
Unit Operating Voltage: Unit Primary Voltage: Unit Secondary Voltage Unit Hertz:		YHC092F Oversized Mol 187-253 MCA: N/A 208 MFS: N/A 230 MCB: N/A 60		N/A N/A	/A Heating Model: /A Heating Input (BTU): Heating Output (BTU): No. Burners:		Low 120,000 96,000 3			
EER						No. Stages	1			
Standard Motor Fie			Field In	d Installed Oversized Motor		Gas Inlet Pressure	4.5/14 11"/14" 1/2"			
MCA: 42.0 MFS: 50.0 MCB: 50.0		MCA: MFS: MCB:	N/A	Natural Gas (Min/Max): LP (Min/Max) Gas Pipe Connection Size:						
INDOOR MOTOR										
Standard Motor				Oversized Motor			Field Installed Oversize	ed Motor		
Number: Horsepower: Motor Speed (RPM): Phase Full Load Amps: Locked Rotor Amps:	1 2.75 3 7.3			Horsepower: Motor Speed (RPM): Phase Full Load Amps:	N/A N/A N/A N/A N/A		Number: Horsepower: Motor Speed (RPM): Phase Full Load Amps: Locked Rotor Amps:	N/A N/A N/A N/A N/A N/A		
COMPRESSOR	Circuit 1/2	17				OUTDOOR MOTOR				
Number: Horsepower: Phase; Rated Load Amps: Locked Rotor Amps:	2 4.1/2.4 3 15.9/10.0 110.0/71.0					Number: 1 Horsepower: 0.75 Motor Speed (RPM): 1100 Phase: 1 Full Load Amps: 4.0 Locked Rotor Amps: 9.3				
POWER EXHAUST (Field Installed Power		Y (3)		FILTERS			REFRIGERANT (2)			
Phase: Horsepower: Motor Speed (RPM): Full Load Amps: Locked Rotor Amps:	1 0.87 1075 5.7 13.6			Furnished: Number	Yes 4	owaway 25"x2"	Type R-410 Factory Charge Circuit #1 5.5 lb Circuit #2 4.2 lb			

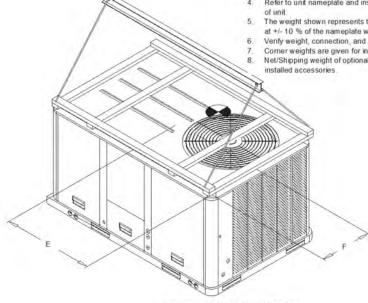
NOTES:

- 1. Maximum (HACR) Circuit Breaker sizing is for installations in the United States only.
 2. Refrigerant charge is an approximate value. For a more precise value, see unit nameplate and service instructions.
 3. Value does not include Power Exhaust Accessory.
 4. Value includes oversized motor.

- Value does not include Power Exhaust Accessory.
 EER is rated at AHRI conditions and in accordance with DOE test procedures.

2019-02-14 02:07:48Z Page 4 of 8

(C) (B) PACKAGED GAS / ELECTRICAL

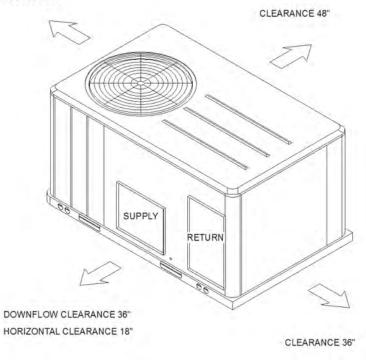

CORNER WEIGHT

INSTALLED ACCESSORIES NET WEIGHT DATA

ACCESSOR	V	WEIGHTS						
ECONOMIZ	36.01	36.0 lb						
MOTORIZE	D OUTSIDE A	R DAMP	ER			1		
MANUAL O	UTSIDE AIR D	AMPER						
BAROMETE	RIC RELIEF							
OVERSIZE	DMOTOR							
BELT DRIV	EMOTOR							
POWER EX	80.01	80.0 lb						
THROUGH	T THE BASE E	LECTRI	CAL/GAS (FIC	PS)				
NUOM TINU	NTED CIRCUIT	BREAK	ER (FIOPS)					
UNIT MOUN	NTED DISCON	NECT (F	IOPS)					
POWERED	CONVENIENC	E OUTL	ET (FIOPS)					
HINGED DO	12.01	12.0 lb						
HAIL GUAR	D							
SMOKE DE	TECTOR, SUF	PLY / RI	ETURN					
NOVAR CO	NTROL							
STAINLESS	STEELHEAT	EXCHA	NGER					
REHEAT								
ROOF CUR	В							
BASIC UNIT WEIGHTS CORNER WEIGHTS CE							NTER OF GRAVITIY	
SHIPPING NET		(A)	340.0 lb	(c)	249.0 lb	(E) LENGHT	(F) WIDT	
1124.0 lb	1026.0 lb	(B)	233.0 lb	(D)	204.0 lb	41"	23"	

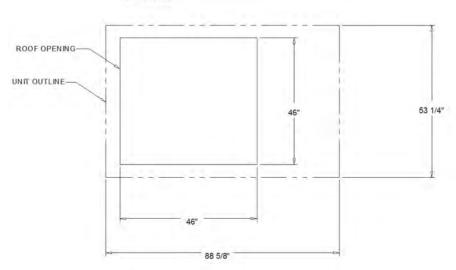
- All weights are approximate. Weights for options that are not list refer to Installation guide.
- The actual weight are listed on the unit nameplate.
- Refer to unit nameplate and installation guide for weights before scheduling transportation and installation
- of unit. The weight shown represents the typical unit operating weight for the configuration selected. Estimated at \pm 10 % of the nameplate weight.
- Verify weight, connection, and all dimension with installer documents before installation.
- Comer weights are given for information only.

 Net/Shipping weight of optional accessories should be added to unit weight when ordering factory or field installed accessories.


PACKAGED GAS / ELECTRICAL

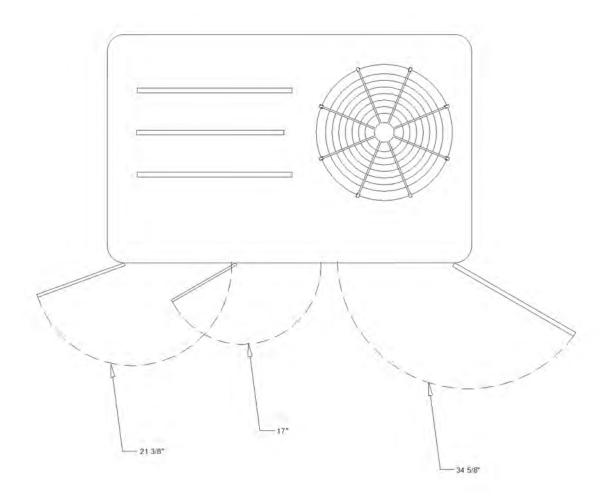
RIGGING AND CENTER OF GRAVITY

2019-02-14 02:07:48Z Page 5 of 8


CLEARANCE FROM TOP OF UNIT 72"

CLEARANCE 36"

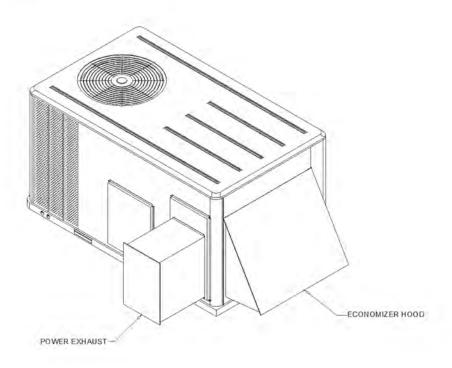
PACKAGED GAS/ELECTRIC

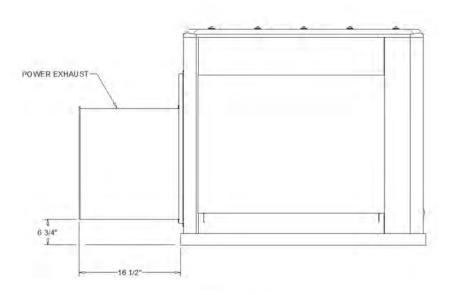

CLEARANCE

PACKAGED GAS/ELECTRIC

DOWNFLOW TYPICAL ROOF OPENING

2019-02-14 02:07:48Z Page 6 of 8




SWING DIAMETER - HINGED DOOR(S) OPTION

ACCESSORY

2019-02-14 02:07:48Z Page 7 of 8

POWER EXHAUST AND HOOD
ACCESSORY

2019-02-14 02:07:48Z

Product Data

AIR HANDLER TECHNOLOGY AT ITS FINEST

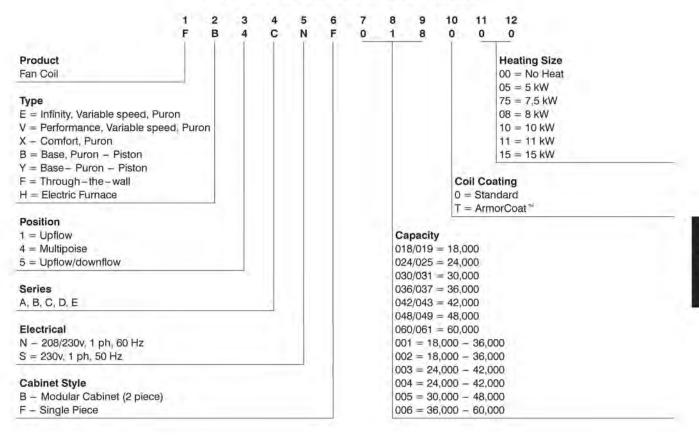
The FB4C fan coil combines the proven technology of Carrier fan coil units with the flexibility to handle both Puron® refrigerant and R-22, as well as vertical and horizontal applications. The design features contoured condensate pans with rugged drain connections, ensuring that little water is left in the unit at the end of the cooling duty cycle. The lack of standing condensate and corrosion free pans improves IAQ and product life, features homeowners appreciate.

Standard features include grooved copper tubing and louvered aluminum fins. Coil circuiting has also been updated to make the most of all Carrier heat pumps and air conditioners. Units come with solid state fan controls, 1-inch (25mm) thick insulation with R-value of 4.2, multi-speed motors, and fully-wettable coils. Units can accommodate factory- and/or field-installed heaters from 3 to 30 kW.

It also should be noted that the unique cabinet design of these fan coils meet new stringent regulations for cabinet air leakage – a requirement of 2% cabinet leakage rate when tested at 1.0 inches of static pressure.

The FB4C fan coil design is loaded with popular features. These fan coils utilize the latest in electronic commutation motor (ECM) technology through the use of high efficiency, X13, blower motors, allowing reliable air delivery with increased static pressure. It comes in a pre-painted (taupe metallic) galvanized steel casing and a factory-supplied power plug for ease of installation. ArmorCoat ™ provides a tin plating of the indoor coil's copper hairpins. This creates a barrier between the corrosion-causing elements and the coil. The FB4C unit is shipped with a factory-installed Teflon-ring piston (018 thru 048) or a Puron refrigerant TXV (060).

A10082


STANDARD FEATURES

- · High efficiency ECM (electronic commutating motor) X13 motors all sizes
- Integrated motor controls have replaced integrated circuit board
- · Five available speed tags to meet a wide range of applications
- · Large, grooved tube, louvered fin coils
- · Efficient, quiet, time-tested blower housings and diffusers
- · Sturdy, drainable condensate pans
- Cabinet construction features innovations designed to prevent cabinet sweating
- Tested for condensate disposal in much tougher conditions than Air Conditioning and Refrigeration Institute requirements
- Super-thick R-4.2 insulation with vapor barrier
- Pre-painted galvanized steel cabinet (taupe metallic)
- · Cabinet design meets stringent regulations for 2% cabinet leakage rate when tested at 1.0 inches static pressure
- · Installation-flexible, multipoise units
- · Horizontal hanging provisions on cabinet
- No tools required to access filter
- · Newly improved filter rack area filter door insulation added for improved air seal
- Factory-installed heater packages available (5- through 15-kW)
- · 3- through 30-kW accessory heaters field installed
- · Factory-supplied power plug
- · Easy plug-in provisions for heater installation
- · Entry options for high and low voltage wiring hook-up
- Easy coil inspection (removable, snap-in plug on A-coil models)
- · Leak-preventing sweat connections
- Puron refrigeration factory-installed Teflon-ring pistons (18 thru 048) or thermostatic expansion valve, TXV, (060)
- Designed for manufactured housing applications.

ADDITIONAL FEATURES

- · Factory-installed heater packages available
- ArmorCoat[™] coil protection available

MODEL NUMBER NOMENCLATURE

Use of the AHRI Cordined TM Mark indicates a manufacturor's participation in the program For verification of certification for indivedual products, go in www.shridinectory.org.

FB4C

DIMENSIONS

UNIT		В	C	D	E	F	G	н	1	CONF IGH SLOPE	"A"	SHIPPING WT (LBS) NON TIN-COATED	SHIPPING WT. (LBS) TIN-COATED
FB4CNF018	42 11/16*	14 5/16"	12 7/16"	12 5/16*	10 7/16"	18 1/8"	18 5/8"	~	12"	X	*	112	112
FB4CNF024	42 11/16"	14 5/16"	12 7/16"	12 5/16*	10 7/16"	18 1/8"	18 5/8"	-	12*	X	(A)	112	112
FB4CNF030	49 5/8*	17 5/8"	15 3/4"	15 5/8*	15 3/8"	23 1/8"	23 5/8"	-	175	X		122	122
FB4CNF036	49 5/8*	17 5/8"	15 3/4"	15 5/8"	15 3/8*	23 1/8"	23 5/8*		17*	X	1000	122	122
FB4CNF042	49 5/8*	21 1/8*	19 1/4"	19 1/8*	15 11/16"	23 7/16"	23 1/8"				χ	157	157
FB4CNF048	49 5/8*	21 1/8"	19 1/4"	19 1/8"	15 11/16"	23 7/16"	23 1/8"	-	-		X	157	157
FB4CNF060	53 7/16*	21 1/8"	19 1/4"	19 1/8"	19 1/2"	27 1/4"	26 15/16*	Œ.		-4-	X	175	175

NOTE

- 1. SERIES DESIGNATION IS THE 14TH POSITION OF UNIT PRODUCT NUMBER
- 2. ALL DIMENSIONS AND IN "INCHES" UNLESS NOTED.

HOTE: ALLOW 21" FROM FRONT FOR SERVICE

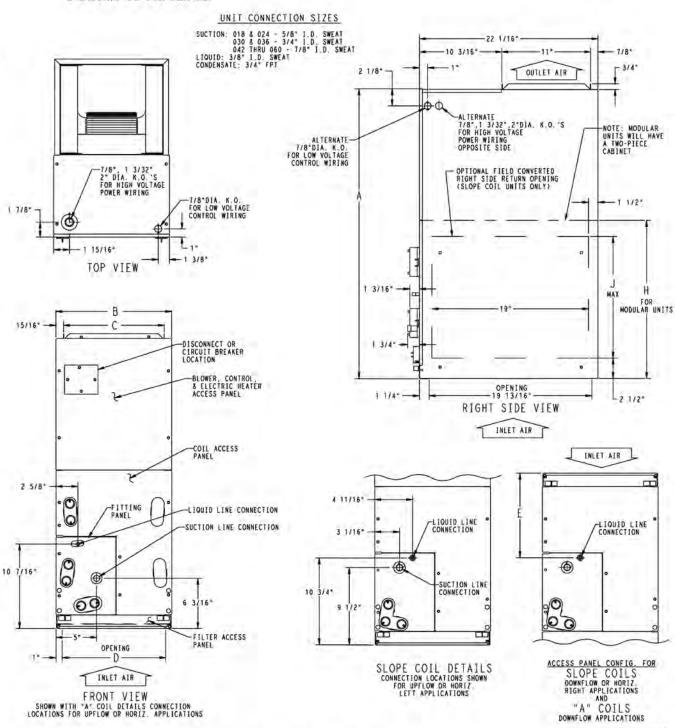
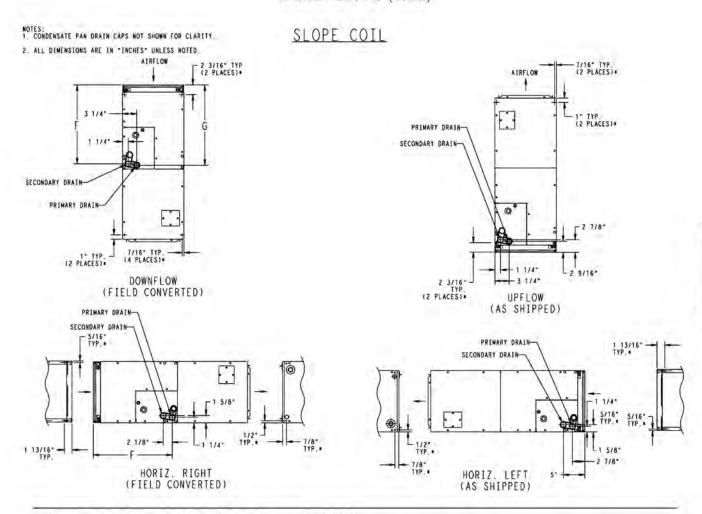



Fig. 1 - FB4CNF - English

A10005

DIMENSIONS (cont.)

 HORIZONTAL MOUNT LOCATIONS - DIMPLES PROVIDED IN TOP PANEL, AND BACK OF CABINET. IN CABINET BOTTOM, HOLES PROVIDED .136° DIA. HORIZONTAL HANGING HARDWARE TO BE FIELD SUPPLIED. A-COIL

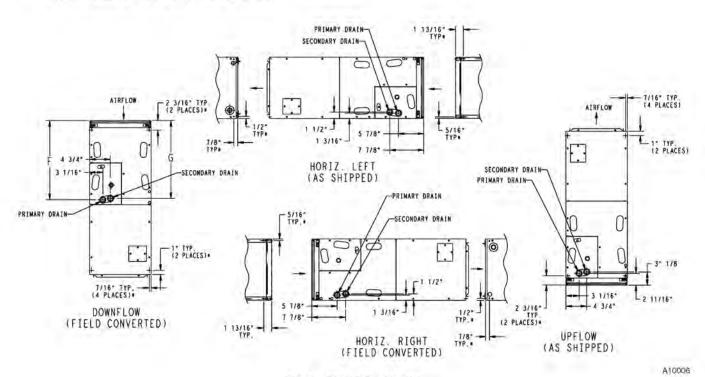


Fig. 2 - FB4CNF - English

DIMENSIONS (cont.)

UNT	Ä	В	c	Ď	E	F	G	H 1	1	CONFIGURE SLOPE	IL IRATION	SHIPPING WT (Ngs) NON TIN-COATED	SHIPPING WT (Kgs) TIN-COATED
F84CNF018	1084.3	363.6	315.9	312.6	265.1	460.4	473.1	(4)	304.8	X		50.8	50.8
FB4CNF024	1084.3	363.6	315.9	312.8	265.1	460.4	473.1		304.8	X	4	50.8	50.8
FB4CNF030	1260.5	447.7	400.0	396.9	390.5	587.4	600.1		431.8	X	-2-	55.3	55.3
FB4CNF036	1260.5	447.7	400.0	396.9	390.5	587.4	600.1	17	431.8	X	line***	55.3	55.3
FB4CNF042	1260.5	536.6	489.0	485.8	398.5	595.3	587.4	16			X	71.2	71.2
FB4CNF048	1260.5	536.6	489.0	485.8	398.5	595.3	587.4	100		1.8	X	71.2	71.2
FB4CNF060	1357.3	536.6	489.0	485.8	495.3	692.2	684.2	140	2-2-	12-1	X	79.4	79.4

NOTE:

- 1. SERIES DESIGNATION IS THE 14TH POSITION OF UNIT PRODUCT NUMBER

NOTE: ALLOW 533.4 FROM FRONT FOR SERVICE

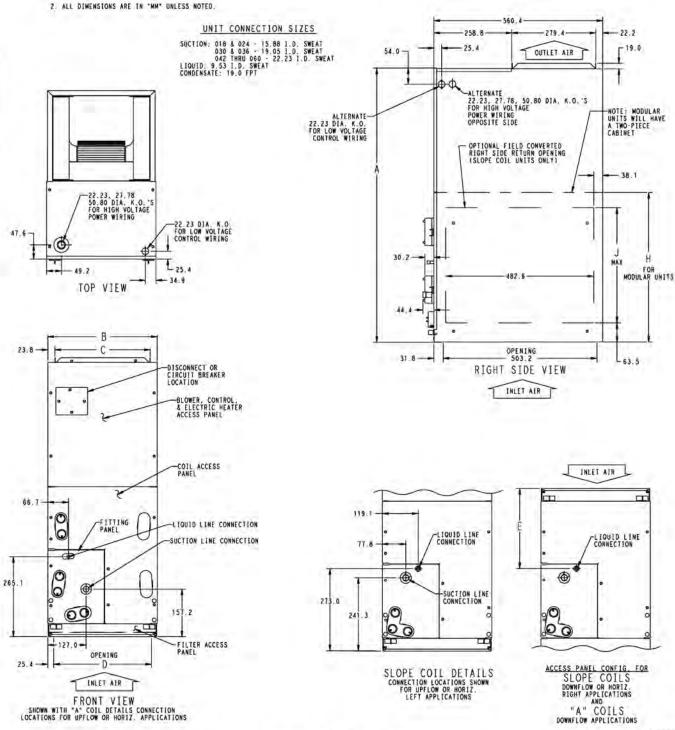
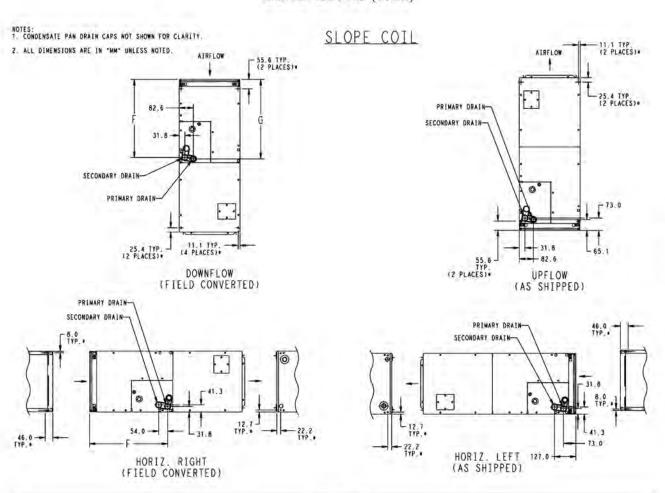



Fig. 3 - FB4CNF - Metric

A10007

DIMENSIONS (cont.)

A-COIL HORIZONTAL MOUNT LOCATIONS - DIMPLES PROVIDED IN TOP PANEL, AND BACK OF CABINET. IN CABINET BOTTOM. HOLES PROVIDED 3.45 DIA. HORIZONTAL HANGING HARDWARE TO BE FIELD SUPPLIED. PRIMARY DRAIN-SECONDARY DRAIN-IA PLACES) 55.6 TYP. AIRFLOW 30.2 25.4 TYP. (2 PLACES) 22.2 TYP: 200.0 HORIZ. LEFT (AS SHIPPED) SECONDARY DRAIN SECONDARY DRAIN-PRIMARY DRAIN PRIMARY DRAIN PRIMARY DRAIN-SECONDARY DRAIN 25.4 TYP. 11.1 TYP. 77,8 55.6 TYP. (2 PLACES)* 120.6 DOWNFLOW 149.2 30.2 (FIELD CONVERTED) 12.7 J 200.0 UPFLOW (AS SHIPPED) HORIZ. RIGHT (FIELD CONVERTED) 22.2-TYP. 1

Fig. 4 - FB4CNF - Metric

A10008

PHYSICAL DATA

222220	FACTORY	NOMINAL COOLING		DIMENSIONS		SHIPPING
ORDERING NO.	HEAT (kW)	CAPACITY (Btuh)	Height	Width	Depth	WEIGHT
FB4CNF018(0,T)00			10 11 120 to	44 5405	00 4/401-	440.11
FB4CNF018(0,T)05	5	18,000	42-11/16 in. 1084mm	14-5/16 in. 363mm	22-1/16 in. 560mm	112 lb 51 kg
FB4CNF018(0,T)08	8		100411111	303(1)(1)	50011111	STAG
FB4CNF024(0,T)00	-		20 24401	44 5465	00.474614	440.16
FB4CNF024(0,T)05	5	24,000	42-11/16 in. 1084mm	14-5/16 in. 363mm	22-1/16 in. 560mm	112 lb
FB4CNF024(0,T)10	10	-	100411111	36311111	20011111	51 kg
FB4CNF030(0,T)00			16 660	35.66.5	00.44004	400.0
FB4CNF030(0,T)08	8	30,000	49-5/8 in. 1260mm	17–5/8 in. 447mm	22-1/16 in. 560mm	122 lb
FB4CNF030(0,T)10	10		120011111	447/11111	56011111	55 kg
FB4CNF036(0,T)00	>		in Sala	Jan Sie I	60 434640	400 11
FB4CNF036(0,T)10	10	36,000	49-5/8 in. 1260mm	17–5/8 in. 447mm	22-1/16 in. 560mm	122 lb
FB4CNF036(0,T)15	15		120011111	447000	560/11/11	55 kg
FB4CNF042(0,T)00	1-3		40 5101	04 4/01	00 4401	400.00
FB4CNF042(0,T)10	10	42,000	49-5/8 in. 1260mm	21 – 1/8 in. 536mm	22-1/16 in. 560mm	157 lb
FB4CNF042(0,T)15	15	7-10-0	120011111	55011111	SOUTH	71 kg
FB4CNF048(0,T)00			40 5/0 :	04 4:00	00 440:-	4571
FB4CNF048(0,T)10	10	48,000	49-5/8 in.	21 – 1/8 in.	22-1/16 in. 560mm	157 lb
FB4CNF048(0,T)15	15		1260mm	536mm	300111111	71 kg
FB4CNF060(0,T)00		60,000	53-7/16 in.	21 – 1/8 in.	22-1/16 in.	175 lb
FB4CNF060(0,T)15	15	00,000	1357mm	536mm	560mm	79 kg

SPECIFICATIONS

FB4C	18	24	30	36	42	48	60
EVAPORATOR COIL							
Face Area (sq. ft)	2,	23	2.	97	4.	45	5.93
Configuration		Sic	ре			Α	
Metering Device (Teflon - ring piston) Puron Refrigerant	EA52PT052	EA52PT057	EA52PT067	EA52PT070	EA52PT076	EA52PT080	TXV
FILTER*							
21-1/2-in (546 mm) X		– in mm)		/8—in mm)		19-7/8-in (505 mm)	
BLOWER ASSEMBLY							
Blower Motor (X13)	HD42AR225	HD44AR240	HD42AR226	HD44AR241	HD44AR242	HD46AR250	HD46AR251
HP	1/3	1/2	1/3	1/2	1/2	3/4	3/4
CFM	600	800	1000	1200	1400	1600	1750

^{*}Filter must be field-supplied for FB4C units.

PERFORMANCE DATA

FB4C AIRFLOW PERFORMANCE (CFM)

MODEL & SIZE	BLOWER SPEED	0.10	0.20	0.30	0.40	0.50	0.60
	Tap 5	767	739	702	669	620	565
	Tap 4	614	569	534	486	436	398
FB4C 018	Tap 3	701	660	616	581	537	499
	Tap 2	614	569	534	486	436	398
	Tap 1	614	569	534	486	436	398
	Tap 5	969	936	892	835	763	676
	Tap 4	826	795	766	743	706	660
FB4C 024	Tap 3	826	795	766	743	706	660
	Tap 2	701	660	616	581	537	499
	Tap 1	617	592	552	507	472	420
	Tap 5	1108	1090	1065	1034	1009	974
	Tap 4	1026	1000	969	938	899	865
FB4C 030	Tap 3	1026	1000	969	938	899	865
	Tap 2	909	873	842	799	762	724
	Tap 1	825	795	757	722	674	634
	Tap 5	1301	1276	1245	1218	1176	112
	Tap 4	1227	1191	1169	1143	1105	107
FB4C 036	Tap 3	1227	1191	1169	1143	1105	107
	Tap 2	1087	1062	1030	1001	966	930
	Tap 1	1026	1000	969	938	899	865
	Tap 5	1560	1544	1507	1464	1424	135
	Tap 4	1419	1397	1358	1320	1279	123
FB4C 042	Tap 3	1419	1397	1358	1320	1279	123
	Tap 2	1249	1220	1184	1142	1093	105
	Tap 1	1242	1205	1158	1110	1069	102
	Tap 5	1743	1712	1679	1642	1610	1574
	Tap 4	1669	1634	1599	1564	1531	149
FB4C 048	Tap 3	1669	1634	1599	1564	1531	1499
	Tap 2	1452	1413	1377	1339	1308	127
	Tap 1	1300	1256	1221	1182	1142	110
	Tap 5	1897	1867	1836	1808	1774	173
	Tap 4	1817	1785	1757	1724	1693	165
FB4C 060	Tap 3	1817	1785	1757	1724	1693	165
	Tap 2	1657	1621	1589	1557	1518	147
	Tap 1	1443	1412	1377	1332	1286	1243

Airflow outside 450 cfm/ton.

NOTES:

- Airflow based upon dry coil at 230v with factory—approved filter and electric heater (2 element heater sizes 018 through 036, 3
 element heater sizes 042 through 060). For FB4C models, airflow at 208 volts is approximately the same as 230 volts because the
 X13 motor is a constant torque motor. The torque doesn't drop off at the speeds the motor operates.
- To avoid potential for condensate blowing out of drain pan prior to making drain trap: Return static pressure must be less than 0.40 in. wc.
 Horizontal applications of 042 – 060 sizes must have supply static greater than 0.20 in. wc.
- 3. Airflow above 400 cfm/ton on 048-060 size could result in condensate blowing off coil or splashing out of drain pan.

GROSS COOLING CAPACITIES (MBH) - PURON® REFRIGERANT

UNIT		R COIL		35 / 2		SATU	RATED 1 40 / 4	EMPER	RATUE	45 / 7	ING EV	APOR	ATOR (° 50 / 10			55 / 13	
SIZE	CFM	EWB	TC	SHC	BF	TC	SHC	BF	TC	SHC	BF	TC	SHC	BF	TC	SHC	BF
	Crivi	72 / 22	41	20	0.00	37		0.00	32	15	0.00	27	13	0.02	21		0.03
	cor				and the second second		17	and the second second						and a line of		11	
	525	67 / 19	33	20	0.03	29	18	0.03	24	16	0.03	19	13	0.03	13	11	0.04
		62 / 17	26	20	0.03	22	18	0.03	18	16	0.04	14	14	0.10	11	11	0.26
FB4C		72 / 22	45	22	0.00	40	19	0.00	35	17	0.01	30	15	0.03	23	12	0.04
018	600	67 / 19	37	22	0.04	32	20	0.04	27	17	0.04	21	15	0.04	15	12	0.05
010		62 / 17	29	22	0.04	24	20	0.04	19	18	0.05	15	15	0.12	13	13	0.28
		72 / 22	49	24	0.00	44	21	0.00	38	19	0.03	32	16	0.04	25	13	0.05
	675	67 / 19	40	24	0.05	35	22	0.05	29	19	0.05	23	16	0.05	16	14	0.06
	0,0	62 / 17	32	25	0.05	27	22	0.05	21	19	0.06	17	17	0.14	14	14	0.29
		and the same of th	43	22	0.00	38	20	0.00	33	17	0.03	28	15	0.04	22	12	and the same of
	900	72 / 22										-					0.05
	700	67 / 19	35	23	0.05	30	20	0.05	25	18	0.05	20	15	0.05	14	13	0.06
		62 / 17	28	23	0.06	23	21	0.06	18	18	0.06	15	15	0.14	12	12	0.29
FB4C		72 / 22	47	24	0.00	42	22	0.01	36	19	0.04	31	17	0.06	24	14	0.06
	800	67 / 19	38	25	0.06	33	22	0.06	28	20	0.07	22	17	0.07	15	14	0.08
024	1 400.00	62 / 17	30	26	0.07	25	23	0.07	20	20	0.08	16	16	0.17	13	13	0.31
		72 / 22	51	26	0.00	45	24	0.03	40	21	0.06	33	18	0.07	26	15	0.07
	900	67 / 19	41	27	0.07	36	25	0.08	30	22	0.08	24	19	0.08	17	16	0.09
	500	62 / 17	33	28	0.07	28	25	0.08	22	22	0.09	18	18	0.19	15	15	0.09
													La Contraction of the Contractio	17.50			
	22	72 / 22	62	31	0.00	56	28	0.00	49	24	0.02	41	21	0.04	32	17	0.04
	875	67 / 19	51	32	0.04	44	28	0.05	37	25	0.05	29	21	0.05	21	18	0.05
		62 / 17	40	32	0.05	34	29	0.05	27	25	0.06	21	21	0.13	18	18	0.28
EDAG		72 / 22	68	34	0.00	61	31	0.00	53	27	0.04	45	23	0.05	35	19	0.06
FB4C	1000	67 / 19	56	35	0.06	49	31	0.06	41	28	0.06	32	24	0.06	22	20	0.07
030	7,530	62 / 17	44	36	0.06	37	32	0.06	29	28	0.07	24	24	0.16	20	20	0.30
		72 / 22	74	37	0.00	66	33	0.02	58	29	0.05	48	25	0.06	38	21	0.07
	4406	THE REAL PROPERTY.	60	38		53	34		1000	30		35	26	0.00	24	22	100
	1125	67 / 19	100		0.07			0.07	44		0.07	20.00					0.08
		62 / 17	48	39	0.07	40	35	0.07	32	31	0.09	26	26	0.18	21	21	0.32
	1000	72 / 22	68	34	0.00	61	31	0.00	53	27	0.04	45	23	0.05	35	20	0.06
	1050	67 / 19	56	36	0.06	49	32	0.06	41	28	0.06	32	24	0.07	22	20	0.07
		62 / 17	44	36	0.07	37	33	0.07	30	29	0.08	24	24	0.17	20	20	0.31
22.5		72 / 22	75	38	0.00	67	34	0.03	58	30	0.06	49	26	0.07	38	22	0.07
FB4C	1200	67 / 19	61	39	0.07	53	35	0.08	45	31	0.08	35	27	0.08	25	22	0.09
036	1200	62 / 17	49	40	0.08	41	36	0.08	32	32	0.09	26	26	0.19	22	22	0.33
			81	41	0.00	72	37	0.05	63	32	0.03	53	28	Total or	41	23	0.09
	1000	72 / 22											112-3-11	0.08			
	1350	67 / 19	66	43	0.08	58	38	0.09	48	34	0.09	38	29	0.09	27	25	0.10
		62 / 17	53	44	0.09	44	40	0.09	35	35	0.11	29	29	0.22	24	24	0.35
		72 / 22	89	44	0.00	80	40	0.00	70	35	0.02	58	30	0.03	46	25	0.04
	1225	67 / 19	73	45	0.04	63	41	0.04	53	36	0.04	42	31	0.04	29	25	0.05
	1	62 / 17	58	46	0.04	48	41	0.04	38	36	0.05	30	30	0.12	25	25	0.28
00000		72 / 22	98	49	0.00	88	44	0.00	77	39	0.03	64	33	0.04	50	28	0.05
FB4C	1400	67 / 19	80	50	0.05	70	45	0.05	58	39	0.05	46	34	0.05	32	28	0.06
042	1400	62 / 17	64	51	0.03	53	46	0.06	42	40	0.03	34	34	0.03	28	28	0.00
							0.7					Total Control		10.723.0.31	1.00	100	
	June 12	72 / 22	106	53	0.00	95	48	0.00	83	42	0.04	69	36	0.05	54	30	0.06
	1575	67 / 19	87	55	0.06	76	49	0.06	63	43	0.06	50	37	0.07	35	31	0.07
		62 / 17	69	56	0.07	58	50	0.07	46	44	0.08	37	37	0.17	31	31	0.31
		72 / 22	88	46	0.00	79	42	0.00	69	37	0.03	58	31	0.04	45	26	0.05
	1400	67 / 19	72	48	0.05	63	43	0.05	52	37	0.05	41	32	0.05	29	27	0.06
		62 / 17	57	49	0.06	48	43	0.06	38	38	0.06	30	30	0.14	25	25	0.29
22.3		72 / 22	97	51	0.00	87	46	0.01	75	40	0.04	63	35	0.06	49	29	0.06
FB4C	1600	67 / 19	79	52	0.06	69	47	0.06	57	41	0.07	45	36	0.07	32	30	0.08
048	1000	A		54		2.5					100	1450	7.61	1000000	7 1 7 2 7	28	
		62 / 17	63		0.07	53	48	0.07	42	42	0.08	34	34	0.17	28		0.31
	1430	72 / 22	105	55	0.00	94	50	0.03	82	44	0.06	68	38	0.07	54	31	0.07
	1800	67 / 19	86	57	0.07	75	51	0.08	62	45	0.08	49	39	0.08	34	33	0.09
		62 / 17	68	59	0.08	57	53	0.08	45	47	0.09	37	37	0.19	30	30	0.33
		72 / 22	106	54	0.00	95	49	0.00	82	43	0.01	69	37	0.03	54	31	0.04
	1600	67 / 19	86	56	0.04	75	50	0.04	63	44	0.04	49	37	0.04	35	31	0.05
	1,27,6	62 / 17	68	56	0.04	57	50	0.04	45	44	0.05	36	36	0.12	29	29	0.28
		72 / 22	113	58	0.00	101	52	0.00	88	46	0.02	74	39	0.04	58	33	0.20
FB4C	1750	11 4 4 4 4 4												100000000000000000000000000000000000000			
060	1750	67 / 19	92	59	0.04	80	53	0.05	67	47	0.05	53	40	0.05	37	33	0.05
7.5 E		62 / 17	73	61	0.05	61	54	0.05	49	48	0.06	39	39	0.13	32	32	0.28
		72 / 22	124	64	0.00	111	57	0.00	97	50	0.04	81	43	0.05	63	36	0.06
	2000	67 / 19	101	66	0.06	88	59	0.06	74	52	0.06	58	44	0.06	41	37	0.07
	2000	0,1,0					91.00										

See Notes following table.

CFM - Cubic Ft per Minute SHC - Gross Sensible Capacity 1000 EWB – Entering Wet Bulb °F (°C)

BF – Bypass Factor

LWB – Leaving Wet Bulb °F (°C)

MBH – 1000 Btuh BF - Bypass Factor

TC - Gross Cooling Capacity 1000 Btuh

NOTES:

- 1. Contact manufacturer for cooling capacities at conditions other than shown in table.
- 2. Formulas:

Leaving db = entering db -sensible heat cap.

1.09 x CFM

Leaving wb = wb corresponding to enthalpy of air leaving coil (hlwb)

hlwb = hewb -total capacity (Btuh)

4.5 x CFM

where hewb = enthalpy of air entering coil. Direct interpolation is permissible. Do not extrapolate.

- 3. SHC is based on 80°F (27°C) db temperature of air entering coil. Below 80°F (27°C) db, subtract (Correction Factor x CFM) from SHC. Above 80°F (27°C) db, add (Correction Factor x CFM) to SHC.
- 4. Bypass Factor = 0 indicates no psychometric solution. Use bypass factor of next lower EWB for approximation.

SHC CORRECTION FACTOR

	EN	TERINO	AIR DR	Y-BULB T	EMPERAT	URE (°F)
	79	78	77	76	75	Under 75
	81	82	83	84	85	Over 85
BYPASS	EN	TERING	AIR DR	Y-BULB T	EMPERAT	URE (°C)
TAG TOIL	26	25	25	24	24	Under 75
	27	28	28	29	29	Over 85
			Cor	rection Fa	ctor	
0.10	.098	1.96	2.94	3.92	4.91	Use
0.20	0.87	1.74	2.62	3.49	4.36	formula
0.30	0.76	1.53	2.29	3.05	3.82	below

Interpolation is permissible.

Correction Factor = 1.09 x (1 - BF) x (db - 80)

FB4C AIR DELIVERY PERFORMANCE CORRECTION COMPONENT PRESSURE DROP (in wc) AT INDICATED AIRFLOW (DRY TO WET COIL)

UNIT OUT			CFM													
UNIT SIZE	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000
018	0.034	0.049	0.063	/m=0	4-											
024	0.034	0.049	0.063	0.076	0.089	HP.	44	44	724	44	44.	35	144	192	241	122
030	~~			0.049	0.059	0.070	0.080			-0-0			~~	2-1-1		
036			5-4-6			0.070	0.080	0.090	0.099			3-60				
042		Table 1	1691	(4.4)	940			0.049	0.056	0.063	0.070				1.694	CHAI
048					447					0.063	0.070	0.076	0.083	0.090		
060								4				0.049	0.054	0.059	0.065	0.070

ELECTRIC HEATER STATIC PRESSURE DROP (in wc)

	FB4C 018 - 0			FB4C 042 - 06	0
HEATER ELEMENTS	kW	EXTERNAL STATIC PRESSURE CORRECTION	HEATER ELEMENTS	kW	EXTERNAL STATIC PRESSURE CORRECTION
0	0	+,02	0	0	+.04
1	3, 5	+.01	2	8, 10	+.02
2	8, 10	0	3	9, 15	0
3	9, 15	02	4	20	02
4	20	04	6	18, 24, 30	10

The airflow performance data was developed using fan coils with 10-kW electric heaters (2 elements) in the 018 through 036 size units and 15-kW heaters (3 elements) in the 042 through 060 size units. For fan coils with heaters of a different number of elements, the external available static at a given CFM from the curve may be corrected by adding or subtracting available external static pressure as indicated

MINIMUM CFM AND MOTOR SPEED SELECTION

FD40					HEAT	ER kW			latin a	
FB4C	3	5	8	9	10	15	18	20	24	30
018	525	525	525	-	600					-
024	700	700	700	-	700	775	10-0			
030		875	875		875	875		1060		
036		1050	970	970	970	920	in-	1040	_	-
042			1225	1225	1225	1225	1225	1225		- :-
048		-	1400	1400	1400	1400	1400	1400	1400	1400
060			1750	1750	1750	1750	1750	1750	1750	1750

Speed Tap 4 (white wire) is used for electric heat only. White wire must remain on tap 4.

FIELD-INSTALLED FILTER STATIC PRESSURE DROP (in wc)

FB4C	0.46				CFM				
FB4C	400	600	800	1000	1200	1400	1600	1800	2000
018	0.02	0.044	0.075		_	_	_	_	-
024, 030	-	0.022	0.048	0.072	0.100		5 = r - 1		
036, 042, 048	I			0.051	0.070	0.092	0.120	0.152	
060					7 -2	_	0.086	0.105	0.130

ACCESSORY ELECTRIC HEATERS

HEATER PART NO.	kW @ 240V	VOLTS/ PH	STAGES (kW OPERATING)	INTERNAL CIRCUIT PROTECTION	FAN COIL SIZE USED WITH	HEATING CAP.** @ 230V
KFCEH0401N03	3	230/1	3	None	018-024	9,400
KFCEH0501N05	5	230/1	5	None	018-060	15,700
KFCEH0801N08	8	230/1	8	None	018-060	25,100
KFCEH0901N10	10	230/1	10	None	018-060	31,400
KFCEH3201F20	20	230/1	5, 20	Fuse‡	030-060	62,800
KFCEH1601315	15	230/3	5, 15	None	036-060	47,100
KFCEH2001318	18	230/3	6, 12, 18	None	042-060	56,500
KFCEH3401F24	24	230/3*	8, 16, 24	Fuse	048, 060	78,300
KFCEH3501F30	30	230/3*	10, 20, 30	Fuse	048, 060	94,100
KFCEH2401C05	5	230/1	5	Circuit Breaker	018-060	15,700
KFCEH2501C08	8	230/1	8	Circuit Breaker	018-060	25,100
KFCEH2601C10	10	230/1	10	Circuit Breaker	018-060	31,400
KFCEH3301C20	20	230/1	5, 20	Circuit Breaker	030-060	62,800
KFCEH2901N09	9	230/1†	3, 9	None	036-060	28,200
KFCEH3001F15	15	230/1	5, 15	Fuse‡	024-060	47,100
KFCEH3101C15	15	230/1	5, 15	Circuit Breaker	024-060	47,100

- * Field convertible to 1 phase.
- † Field convertible to 3 phase.
- ‡ Single point wiring kit required for these heaters in Canada.
- ** Blower Motor heat not included.

ESTIMATED SOUND POWER LEVEL (dBA)

	CONI	DITIONS		4	OCTAVE BAN	ID CENTER F	REQUENCY		
FB4C	CFM	Ext Static Pressure	63	125	250	500	1000	2000	4000
018	600	0.25	64.7	60.7	56.7	53.7	51.7	49.7	45.7
024	800	0.25	66.0	62.0	58.0	55.0	53.0	51.0	47.0
030	1000	0.25	67.0	63.0	59.0	56.0	54.0	52.0	48.0
036	1200	0.25	67.8	63.8	59.8	56.8	54.8	52.8	48.8
042	1400	0.25	68.4	64.4	60.4	57.4	55.4	53.4	49.4
048	1600	0.25	69.0	65.0	61.0	58.0	56.0	54.0	50.0
060	2000	0.25	70.0	66.0	62.0	59.0	57.0	55.0	51.0

Estimated sound power levels have been derived using the method described in the 1987 ASHRAE HVAC Systems & Applications Handbook, Chapter 52, p. 52.7.

ELECTRICAL DATA FOR UNITS WITH FACTORY-INSTALLED HEAT

	Hari				SIN	IGLE CIRC	UIT	1		DUAL (CIRCUIT		
FB4CNF	MTR HP	MTR FLA	VOLTS / PH/ HZ	HEAT PACK INSTALLED	HEATER	MCA	МОСР	HTR. AMPS	MCA	MOCP	HTR. AMPS	MCA	МОСР
	100				AMPS	(30.00	3077350	L1/L2	L1/L2	L1/L2	L3/L4	L3/L4	L3/L4
018(0,T)05	1/3	2.8	208/230/1/60	MKFCEH0501N05	18.1/20.0	26.1/28.5	30/30	N/A	N/A	N/A	N/A	N/A	N/A
80(T,0)810	1/3	2.8	208/230/1/60	MKFCEH0801N08	28.9/32.0	39.6/43.5	40/45	N/A	N/A	N/A	N/A	N/A	N/A
024(0,T)05	1/2	4.1	208/230/1/60	MKFCEH0501N05	18.1/20.0	27.8/30.0	30/30	N/A	N/A	N/A	N/A	N/A	N/A
024(0,T)10	1/2	4.1	208/230/1/60	MKFCEH0901N10	36.2/40.0	50.4/55.1	60/60	N/A	N/A	N/A	N/A	N/A	N/A
80(T,0)080	1/3	2.8	208/230/1/60	MKFCEH0801N08	28.9/32.0	39.6/43.5	40/45	N/A	N/A	N/A	N/A	N/A	N/A
030(0,T)10	1/3	2.8	208/230/1/60	MKFCEH0901N10	36.2/40.0	48.8/53.5	50/60	N/A	N/A	N/A	N/A	N/A	N/A
036(0,T)10	1/2	4.1	208/230/1/60	MKFCEH0901N10	36.2/40.0	50.4/55.1	60/60	N/A	N/A	N/A	N/A	N/A	N/A
036(0,T)15	1/2	4.1	208/230/1/60	MKFCEH1501F15	54.2/59.9	72,9/80.0	80/80	36,2/40.0	50.4/55.2	50/60	18.1/20.0	22.6/25.0	25/25
042(0,T)10	1/2	4.1	208/230/1/60	MKFCEH0901N10	36.2/40.0	50.4/55.1	60/60	N/A	N/A	N/A	N/A	N/A	N/A
042(0,T)15	1/2	4.1	208/230/1/60	MKFCEH1501F15	54.2/59.9	72.9/80.0	80/80	36.2/40.0	50.4/55.2	50/60	18.1/20.0	22.6/25.0	25/25
048(0,T)10	3/4	6.0	208/230/1/60	MKFCEH0901N10	36.2/40.0	52.8/57.5	60/60	N/A	N/A	N/A	N/A	N/A	N/A
048(0,T)15	3/4	6.0	208/230/1/60	MKFCEH1501F15	54.2/59.9	75.3/82.4	80/90	36.2/40.0	52.8/57.5	60/60	18.1/20.0	22.6/25.0	25/25
060(0,T)15	3/4	6.0	208/230/1/60	MKFCEH1501F15	54.2/59.9	75.3/82.4	80/90	36.2/40.0	52.8/57.5	60/60	18.1/20.0	22.6/25.0	25/25

ELECTRICAL DATA FOR UNITS WITHOUT ELECTRICAL HEAT

		1000		SIN	GLE CIRCUIT	BRANCH CIRCUIT
MODEL NO.	MTR HP	MTR FLA	VOLTS/PH/HZ	MCA	MAXIMUM OVERCURRENT PROTECTION	MIN WIRE SIZE*
FB4CNF018(0,T)00	1/3	2.8	208/230/1/60	3.5	15	14
FB4CNF024(0,T)00	1/2	4.1	208/230/1/60	5.1	15	14
FB4CNF030(0,T)00	1/3	2.8	208/230/1/60	3.5	15	14
FB4CNF036(0,T)00	1/2	4.1	208/230/1/60	5.1	15	14
FB4CNF042(0,T)00	1/2	4.1	208/230/1/60	5.1	15	14
FB4CNF048(0,T)00	3/4	6.0	208/230/1/60	7.5	15	14
FB4CNF060(0,T)00	3/4	6.0	208/230/1/60	7.5	15	14

Use copper wire only. Use 75°C only in this application. When using non-metallic (NM) sheathed cable, wire size required should be based on that of 60°C conductors, instead of wire sizes shown in table above per NEC Article 336–26.

NOTE: If branch circuit wire length exceeds 100 ft (30 m), consult NEC 215-2 to determine maximum wire length. Use 2% voltage drop. FLA - Full Load Amps

ACCESSORY ELECTRIC HEATER ELECTRICAL DATA

						Section Assess									100110							
HEATER	KW	>	o I d	INTERNAL		208/230V		ρ, 191	Min Ampacity 208/230V*		Min	Min Wire Size (AWG) 208/230V†	WG)	Min	Min Gnd Wire Size 208/230V	92	Max Fu	Max Fuse/Ckt Bkr Amps 208/230V	Amps	Ma: 20	Max Wire Length 208/230V (FI)‡	£ _
PAH NO.			wш	TION	Single	Dust	Dual Circuit	Single	Dust	Dual Circuit	Single	Dual	Dual Circuit	Single	Dual Gircuit	ireuit	Single	Dual	Dual Circuit	Single	Dual	Dual Circuit
	240v	208v			Circuit	11,12	L3,L4	Clrouit	21,11	13,14	Circuit	11,12	13,14	Chevil	21,12	L3,L4	Circuit	7117	13,14	Clresull	71'17	13,14
KFCEH0401N03	100	CA CA	÷	None	10.9/12.0	X	1	15.9/17.3	Y	1	12/13	ì	Y	12/12	Ŷ	ľ	20/20	j	ľ	89/29	ì	Ù
KFCEH0501N051	9	3.8	-	None	18,1/20,0	Ţ	X	26,0/28,4	į	Y	10/10)	Ĭ	10/10	'n	Ĭ	30/30	ij	Ţ	99/99	į	Ĭ
KFCEH0501N052	ún	3.8	÷	None	18.1/20.0	ì	ì	31.2/33.5	ì	þ	8/8	1	ì	10/10	7	ì	35/32	ı	ì	88/98	þ	1
KFCEH2401C051	20	3,8	¥	Ckr Bkr	18.1/20.0			26,0/28,4			10/10	1	1	10/10	Ì	I	06/06	1	ij	99/99	1	Ĭ,
KFCEH2401C052	ία	3.8	+	CKTBKr	18.1/20.0	ì	ì	31.2/33.5	1	Ì	8/8)),	30/10	X	į	35/35)	Y,	82/88	j	Ĭ,
KFCEH0801N08	.8	90	-	None	26.9/02.0	Ü	Ĭ	44,7/46,5	ï	Y	8/8	Ĭ	ĺ	10/10	Y	Ü	45/50	ï	(09/65	į	X
KFCEH2501C08	8	6.0	÷	CMTBkr	28.9/32.0	ĵ	Í	44.7/48.5	1	1	8/8	1	ï	10/10	η	Ī	45/50	1	1	09/65	ĺ	1
KFCEH2901N09	6	6.8	ę.	None	32,8/36,0	ı)	49,5/53,5	1	1	8/6	9	j	10/10	ý)	50/60	ı)	54/67	ı	λ
KFCEH2901N09**	6	6.8	773	None	18.8/20.8	Ÿ.	Ĺ	32.0/34.5	ľ	ľ	8/8	į	Ţ	30/10	Ÿ	j,	35/32	1	Ţ	83/85	ŀ	Ĭ,
KFCEH0901N10	104	7.5	÷	None	36,2/40,0	ĭ	Ĭ	53,8/56,5	Ĭ,	ť	6/6	1	Í	10/10	4	Ĭ	60/60	1	Í	78/80	į	X
KFCEH2601C10	-01	7.5	-	CKIBKI	36.2/40.0	l,	ķ	53.8/58.5	1	1	8/8	1)	10/10	1	r	09/09	ì	P	08/82	ì	Ý
KFCEH3001F15	15	1.3	¥	Fluse	542/59.9	36.2/40,0	18,1/20.0	76,3/83,4	55 8/58,5	22.7/25.0	4/4	9/9	10/10	8/6	10/10	10/10	90/90	09/09	25/25	68/98	78/80	75/76
KFCEH3101C15	15	11.3	+	CKIBKI	Ţ	36.2/40.0	18.1/20.0	}	53.8/58.5	22.7/25.0	À	9/9	10/10)	10/10	10/10	ĵ.	09/09	25/25	À	78/80	35/25
KFCEH1601315	15	11.0	100	None	31,3/34,6	i	1	47.7/51.8	Ŷ	Ŷ	8/6	1	1	10/10	X	ú	50/60	Ì	1	26/30	Y.	1
КРСЕН2001318	18	13.5	m	None	37.6/41.5	ì	j.	65.5/80.4	1	Ì	8/8	ſ	ï	10/8	ý	Ĭ	02/09	1	ľ	76/77	j	ſ
KFCEH3201F20	62	15.0	F.	Fuse	72,3/79,9	362/40,0	36.2/40.0	98.9/108.4	53.8/58.5	45,3/50.0	3/2	9/9	8/8	8/6	10/10	10/10	100/110	09/09	99/99	85/109	78/80	59/59
KFCEH3301C20	50	15.0	-	CKIBKI	ì	36.2/46.0	36.2/40.0)-	53.8/58.5	45.3/50.0	j.	9/9	8/8	ì	10/10	10/10	ì	09/09	50/50	į	78/80	95/99
- The Control of the	24	18.0	m	Fuse	50.1/55,4	Ţ	Ĭ	71.2/77.8	Y	1	-4/4	1	Ĭ	8/8	ĵ	I	80/80	ĭ	X	94/85	Ţ	Ĭ
CENSAGI LEATING	24	18,0	+	Fuse	86.7/95.5		X	116.9/127.9		Ì	1/1/	1	Ì	9/9		Ī	125/150	1	Y	115/116		X
- Constitution of the Cons	8	22.5	m	Fuse	62:0/69.2	į	À	86.8/95.0	Ţ	1	9/8	ł	ý	8/18	Ţ	ļ	001/06	Ĭ	ý	86/46	1	Y
N'CENSONIESOLI	30	22.5		Flyss	109 8/120.0	j	1	144 8/158.5	,	1	QQ/Q	1)	6/8	1	1	150/175	,	1	117/150	,	1

FIELD MULTIPOINT WIRING OF 24-AND 30-kW SINGLE PHASE

HEATER PART NO.	×	kW	A I 4		HEATER AMPS 208/230V			MIN AMPACITY 208/230V*		MIN	MIN WIRE SIZE (AWG) 208/230V†	4WG)	MIN GND WIRE SIZE	MAX	MAX FUSE/CKT BKR AMPS 208/230V	BKR	MAX 20	AAX WIRE LENGTH 208/230V (FT)#	HGTH #C
	240V	2087	οш	21,11	13,14	15,16	71,12	13,14	15,16	11,12	13,14	15,16	208/2307	11,12	L3,L4	15,16	या'ग	L3,L4	15,16
CEH3401F2411	24	18.0	¥	28.9/32.0	28,9/32,0	28.9/32.0	44,7/48.5	36.2/40.0	36.2/40.0	8/8	8/8	8/8	10/10	45/50	40/40	40/40	09/69	73/73	73/73
KFCEH3501F3011	30	22.6	÷	36.2/40.0	36,2/40,0	36.2/40.0	53.8/58.5	45,3/50.0	45.3/50.0	9/9	8/8	8/8	10/10	09/09	90/20	50/50	78/80	59/59	69/89

Includes blower motor amps of largest fan coil used with heater.

† Copper wire must be used. If other than uncoated (non-plated), 75°C ambient, copper wire (solid wire for 10 AWG and smaller, stranded wire for larger than 10 AWG) is used, consult applicable tables of the National Electric Code (ANSI/NFPA 70).

£ Length shown is as measured 1 way along wire path between unit and service panel for a voltage drop not to exceed 2%.

** Field convertible to 3 phase.

11 Field convertible to 1 phase, single or multiple supply circuit. NOTES

For fan coil sizes 018—036.
 For fan coil sizes 042—060.
 Single circuit application of F15 and F20 heaters requires single—point wiring kit accessory.

HEATER ELECTRICAL DATA

FACTORY-INSTALLED HEATER OPTIONS*

MODEL	018	024	030	036	042	048	060
FB4CNF	5/8	5/10	8 / 10	10/15	10 / 15	10 / 15	15

^{*} For field-installed heater/fan coil combinations, see Accessory Electric Heaters Table.

ELECTRIC HEATER INTERNAL PROTECTION

HEATER kW	PHASE	FUSE QTY/SIZE	CKT BKR* QTY/SIZE
5	1	P = r	1/60
8	1.		1/60
9	1/3	-	
10	1		1/60
15	1	2/30-2/60	2/60
15	3		_
18	3		
20	1	4/60	2/60
24	1/3	6/60	
30	1/3	6/60	

^{*} All circuit breakers are 2 pole.

When using units with 20-, 24-, and 30-kW electric heaters, maintain a 1-in. (25mm) clearance from combustible materials to discharge plenum and ductwork and maintain a distance of 36-in. (914mm) from the unit. Use an accessory downflow base to maintain proper clearance on downflow installations. Use flexible connectors between ductwork and unit to prevent transmission of vibration. When electric heater is installed, use heat resistant material for flexible connector between ductwork and unit at discharge connection. Ductwork passing through unconditioned space must be insulated and covered with vapor barrier

ACCESSORIES

	ITEM	ACCESSORY PART NO.*	FAN COIL SIZE USED WITH
1.	Disconnect Kit	KFADK0201DSC	Cooling controls and heaters 3- through 10-kW
		KFACB0101CFB	018, 024
2.	Downflow Base Kit	KFACB0201CFB	030, 036
		KFACB0301CFB	042, 048, 060
	Downston Comments of the f	KFADC0201SLP	Slope Coil Units-018, 024, 030, 036
3.	Downflow Conversion Kit.†	KFADC0401ACL	A-Coil Units-042, 048, 060
4.	Downflow/Horizontal Conversion Gasket Kit	KFAHD0101SLP	All
5.	Horizontal Water Management Kit (25 pack) ‡	KFAHC0125AAA	All
6.	Single - Point Wiring Kit	KFASP0101SPK	Only with 15- and 20-kW Fused Heaters
		KFAFK0112SML	018, 024
7.	Filter Kit (12 Pack)	KFAFK0212MED	030, 036
		KFAFK0312LRG	042, 048, 060
		FNCCABCC0014	040.004
		(FILXXFNC0014)	018, 024
8.	Fan Coil Filter Cabinet	FNCCABCC0017	030, 036
0.	(Fan Coil Filter Media)	(FILXXFNC0017)	030, 036
		FNCCABCC0021	042, 048, 060
		(FILXXFNC0021)	042, 048, 000
9.	PVC Condensate Trap Kit (50 pack)	KFAET0150ETK	All
10.	Air Cleaner 240 - volt Conversion Kit	KEAVC0201240	All
		KSATX0201PUR	018, 024, 030
11.	TXV Kit Puron R-410A	KSATX0301PUR	036, 042
		KSATX0401PUR	048
		KSATX0601HSO	018, 024, 030, 036, 042
12.	TXV Kit R-22	KSATX0701HSO	048
		KSATX1001HSO	060

^{*} Factory authorized and listed, field-installed.

[†] KFAHD0101SLP must also be purchased for downflow applications.

[‡] KFAHD0101SLP must also be purchased for downflow or horizontal applications.

ACCESSORIES (cont.)

Accessory Kits Description Suggested and Required Use

1. Disconnect Kit

The kit is used to disconnect electrical power to the fan coil so service or maintenance may be performed safely. SUGGESTED USE: Units for 3- through 10-kW electric resistance heaters and cooling controls.

2. Downflow Base Kit

This kit is designed to provide a 1-in. (25mm) minimum clearance between unit discharge plenum, ductwork, and combustible materials. It also provides a gap-free seal with the floor.

REQUIRED USE: This kit must be used whenever fan coils are used in downflow applications.

3. Downflow Conversion Kit

Fan coils are shipped from the factory for upflow or horizontal-left applications. Downflow conversion kits provide proper condensate water drainage and support for the coil when used in downflow applications. Separate kits are available for slope coils and A-coils. REQUIRED USE: This kit must be used whenever fan coils are used in downflow applications.

4. Downflow/Horizontal Conversion Gasket Kit

This kit provides the proper gasketing of units when applied in either a downflow or horizontal application.

REQUIRED USE: Fan coils in either downflow or horizontal applications.

5. Horizontal Applications - Water Management Kit

This kit provides proper installation of fan coils under conditions of high static pressure and high relative humidity, SUGGESTED USE: All fan coils.

6. Single Point Wiring Kit

The single point wiring kit acts as a jumper between L1 and L3 lugs, and between the L2 and L4 lugs. This allows the installer to run two heavy-gauge, high-voltage wires into the fan coil rather than 4 light-gauge, high-voltage wires.

SUGGESTED USE: Fan coils with 15- and 20-kW fused heaters only.

7. Filter Kit (12 pack)

The kit consists of 12 fan coil framed filters. These filters collect large dust particles from the return air entering the fan coil and prevents them from collecting on the coil. This process helps to keep the coil clean, which increases heat transfer and, in turn, the efficiency of the system.

SUGGESTED USE: To replace filters in fan coils.

REQUIRED USE: All units unless a filter grille is used.

8. Fan Coil Filter Cabinet

This cabinet is mounted to the fan coil on the return air end and designed to slip over the outer fan coil casing. The cabinets are insulated using the same insulation as production fan coils. They are designed for the removal of particulates from indoor air using FILXXFNC00(14, 17, 21, 24) media filter cartridges. These fan coil media filter cartridge kits are designed for the removal of particles from indoor air. The cartridge is installed in the return air duct next to the air handler or further upstream.

SUGGESTED USE: All fan coils.

9. Condensate Drain Trap Kit

This kit consists of 50 PVC condensate traps. Each trap is pre-formed and ready for field installation. This deep trap helps the system make and hold proper condensate flow even during blower initiation.

SUGGESTED USE: All fan coils.

10. Air Cleaner 240-volt Conversion Kit

The AIRA electronic air cleaner comes ready for 115-v operation.

REQUIRED USE: This kit is required when running 240-volt circuit to air cleaner.

Catalog No: FB4CNF-04PD

Trane® Voyager™

12.5- to 25-ton light-commercial rooftop units

The right size for high comfort. The lowest installed cost and lowest total

Most Trane Voyager rooftop units can be ready in as few as two weeks—the fastest delivery time in the industry—so your project doesn't get delayed while waiting for equipment.

When it comes to HVAC expenses, every dollar counts. From your initial investment to monthly utility costs and maintenance, a light-commercial rooftop unit can have a significant impact on your bottom line—which is why a Trane® Voyager™ light-commercial rooftop unit can be the perfect choice.

No competing light-commercial rooftop unit has a lower installed cost than the Trane Voyager—and with its industry-leading efficiency and low maintenance requirements, no other unit has a lower total cost of ownership.

And once you've made the wise decision that a Trane Voyager light-commercial rooftop unit is the right solution for your building, it's good to know that no other light-commercial rooftop unit can be delivered as quickly as the Trane Voyager, with most units ready in as few as two weeks—order to ship.

The lowest costs. The highest efficiency. The fastest delivery time. For all these reasons and more, a Trane Voyager light-commercial rooftop unit isn't just the perfect choice—it's the only choice to extend the life of your building and improve the lives of those within it.

cost of ownership.

Ultra-high efficiency means ultra-low operating costs

Voyager ultra-high-efficiency models continue the Trane tradition of leadership in energy efficiency with Trane eFlex[™] variable-speed compressors and fans (available fall 2013), which deliver the performance building occupants need, while also delivering the efficiency building owners want. By precisely matching output to the cooling demands of the space, Trane eFlex compressors and fans operate at their fastest levels when demand is high, and modulate to slower levels when demand is less, for an ultra-high Energy Efficiency Ratio (EER, which measures efficiency at peak output) and Integrated Energy Efficiency Ratio (IEER, a measurement of efficiency at variable workloads). The result: lower energy use and smaller energy bills.

Customized to fit your unique needs and delivered quickly

Because Trane recognizes that every building is different, we offer a wide range of factory-installed options on Voyager rooftop units, such as coated condenser coils, stainless steel drain pans, unit-mounted circuit breakers and more. Every Voyager unit can be customized to meet your exact needs, so you don't have to compromise.

Factory-installed options are rigorously tested to dramatically reduce the amount of time and money spent installing and commissioning units in the field, as well as the chances for installation errors. Even the most highly configured Voyager units are ready in as few as two weeks—the fastest delivery time in the industry. You'll spend less time waiting for your new Voyager rooftop unit and more time enjoying its cooling performance.

The Trane Human Interface Panel: More information, more effectively delivered

The optional Trane Human Interface Panel (available fall 2013) represents a breakthrough in unit controls, delivering comprehensive information about system performance on a large, easy-to-read color touchscreen display. Unlike competing displays, information shown on the Human Interface Panel is understandable at a glance—without requiring time-consuming decoding. Technicians can quickly and easily monitor important system operating parameters in real time, and compare current information with past performance—information that can be invaluable in keeping your Voyager rooftop unit working optimally. The Human Interface Panel also allows technicians to change certain system set points right from the panel, aiding in start-up, preventive maintenance tasks and troubleshooting.

Trane Intelligent Services for 24/7 peace of mind

The available Trane Intelligent Services (TIS) can monitor and evaluate real-time data from Voyager units around the clock, 365 days a year. If an immediate or potential problem is detected, Trane can notify the building operator or dispatch technicians to the equipment's location. Continuous monitoring and expert data analysis can allow problems to be addressed quickly, reducing the likelihood that building occupant comfort will be impacted.

Comfort and low cost of ownership

Trane combines technological innovation with legendary reliability and performance to create the lowest cost of ownership. Trane® Voyager™ rooftop units not only offer the lowest installed cost, they also can reduce utility bills and maintenance requirements to create the lowest total cost of ownership in units that can operate at peak performance for as long as 20 to 30 years.

A Trane eFlex variable-speed compressor and fan technology (Available fall 2013)

Trane eFlex™ variable-speed compressors and fans deliver the performance building occupants need, while also delivering the efficiency building owners want. By precisely matching output to the cooling demands of the space, Trane eFlex compressors and fans operate at their fastest levels when demand is high, and modulate to slower levels when demand is less, for an ultra-high Energy Efficiency Ratio (EER, which measures efficiency at peak output) and Integrated Energy Efficiency Ratio (IEER, a measurement of efficiency at variable workloads). The result: lower energy use and smaller energy bills.

Variable air volume (VAV) option (Not shown)

Voyager rooftop systems offer both single-zone and multi-space VAV. ReliaTel™ controls can integrate with existing VAV solutions to interface with both Tracer™ and Tracker™ control platforms. Together, they deliver energy-efficient solutions for every building need—and require minimal setup and commissioning. With the single-zone VAV option, the system modulates indoor fan and stage compressors as space temperature changes, for increased part-load efficiency and more precise temperature control.

Trane Human Interface Panel (Available fall 2013)
A large, easy-to-read color touchscreen display delivers

important system information at a glance—without requiring time-consuming decoding. This factory-installed

option allows technicians to quickly and easily monitor important system operating parameters in real time, and compare current information with past performance—information that can be invaluable in keeping your Voyager rooftop unit working optimally. The Human Interface Panel also allows technicians to change certain system set points right from the panel, aiding in start-up, preventive maintenance tasks and troubleshooting.

Factory-installed high short circuit current (SCCR) option

A factory-installed high-SCCR solution is available to help equipment meet the requirements of applicable building codes. Factory installation saves time and money, and ensures code compliance for a smoother installation process.

MERV 8 and MERV 13 filters

High-efficiency filtration for better indoor air quality and occupant comfort. Using a MERV 13 air filter, Voyager can remove contaminants as small as 0.3 microns in size, which can include bacteria, cooking oil, smoke, insecticide dust and paint pigments.

All-aluminum microchannel (MCHE) condenser coil

A more environmentally friendly condenser coil features improved durability and reliability. A recessed design protects fins from incidental damage, while increased coil rigidity enhances durability. The coil's design dramatically reduces the opportunity for leaks, and all-aluminum construction minimizes corrosion and eliminates formicary corrosion. An optional coil coating can further safeguard

against corrosion. The coil also uses less refrigerant, making it more environmentally friendly and meeting the requirements of LEED EA Credit 4.

Hot gas reheat (Not shown)

Heat energy is recycled from the compressor to reduce indoor air humidity, eliminating the need for a separate heat source to do the job—which saves energy and money. Maintaining proper indoor humidity levels improves indoor comfort and can eliminate costly moisture-related damage to the building.

Foil-faced insulation (Not shown)

Foil-faced insulation edges are captured and sealed, reducing the chance for insulation fibers to enter the air stream and clog filters, which reduces maintenance needs and costs.

Hinged access doors

Easy entry to the unit's service access areas reduces maintenance time—and reduces the opportunity for roof damage, too.

Color-coded, numbered wiring

Faster identification of wires helps save time and money when servicing and diagnosing the unit.

Trane solutions: Making buildings better for life

Performance

Trane® products are designed, engineered, built and tested to be solid performers, quietly doing their jobs year after year with minimal need for maintenance and repairs. The Trane Voyager™ light-commercial rooftop units build on a long history of efficient, durable, high-performance HVAC products. And Trane has the Building Information Modeling (BIM) objects to support your building design. Trane BIM objects represent your exact specifications and are pre-populated with data unique to each product configuration, saving time, increasing accuracy and improving how buildings are constructed.

Innovation

Founded a century ago on the belief that imagination and inspiration can overcome any obstacle, the Trane legacy of technological breakthroughs has made it an industry legend. Today's Trane Voyager rooftop units contain numerous innovative solutions to boost performance and efficiency while maintaining high levels of reliability.

Commitment

The Trane commitment to our customers' satisfaction begins before a product is installed and lasts for that product's entire life. As a company, our livelihood depends on the Trane reputation—and the Trane reputation depends both on our products' performance as well as our relationships with customers. We want every Trane customer to stay a Trane customer. Our commitment to those customers reflects that wish.

Knowledge

To become and remain an industry leader requires a full understanding of existing knowledge and a never-ending quest for new discoveries. For one hundred years, Trane has built and maintained its leadership status in the HVAC industry by employing the brightest and most inquisitive scientists, engineers and design experts—all of whom share a singular passion to know and explore the ever-evolving technology that improves the lives of our customers.

Visit Trane.com/LCU for more information on Trane Voyager light-commercial units—or contact your local Trane account manager to learn more.

Scan the code or visit

Trane.com/LCU

to learn more about

Trane® Voyager™

rooftop units.

Ingersoll Rand (NYSE:IR) advances the quality of life by creating and sustaining safe, comfortable and efficient environments. Our people and our family of brands—including Club Car*, Ingersoll Rand*, Schlage*, Thermo King* and Trane*—work together to enhance the quality and comfort of air in homes and buildings; transport and protect food and perishables; secure homes and commercial properties; and increase industrial productivity and efficiency. We are a \$14 billion global business committed to a world of sustainable progress and enduring results.

ingersollrand.com

Manufacturer Specification Sheets

ECM 20: Plug Load Controllers

Investment Grade Audit

This page is intentionally left blank.

The Bert® 110 M:

Plug Load Management with Measurement

If you're like most facility managers, you suspect that there are large potential savings from plug based loads —but you lack an easy way to document actual energy savings needed to create proven savings reports. The Bert® Plug Load Management System, with measurement-enabled Bert® 110M units, is a brilliant solution.

- Measure energy use with Bert's real-time measurement features.
- Analyze energy use, establishing optimal schedules and documenting savings.
- Control plug based devices throughout your facility.

The Plug Load Problem:

Studies show that plug based load is a large and growing source of energy use- estimated at 20% of energy use for offices and 25% of electricity for schools. Yet many schools, offices and retail locations are closed for nearly as many hours per year as they are open. Bert® provides the simple, sophisticated tools to turn equipment on when buildings are occupied and off when they're not.

Bertbrain 1000 Control Software Your WiFi Network Bert®

How Bert® Works

Each Bert® contains a microprocessor that can communicate with the Bertbrain 1000/M control software across your wireless network. Bert® can store 7-day on/off schedules with multiple on/off commands each day. This allows you to set schedules that mirror the actual operating hours of your facility and easily modify schedules throughout the year.

Measure, Analyze and Control:

The Bert® 110M features an energy measurement chip that monitors the amount of power

flowing through the plug and reports this information back to the Bertbrain 1000M software program. The measurement feature allows you to know the actual energy consumption of your equipment, as used in your facility, rather than rely on estimates from manufacturer spec sheets or industry studies.

Facility managers can analyze the usage information to create optimal schedules to control plug based load using Bert®. The measurement tool has other benefits as well. Energy consumption and savings data can be used for budgeting or to verify performance contracts. During load shedding events managers can see the actual amount of power that is being saved during the event. Bert® measurement is a brilliant solution.

The Bert® Advantage

Bert® has many advantages over products such as timers or occupancy sensors. Most timers only hold a single schedule. Bert® can use multiple on/off times that will accurately reflect your facility's true operational hours. When holidays or summer breaks dictate schedule changes, new schedules are sent to Bert® with the click of a mouse. Since Bert® is on your network, Bert® does not have to be reset manually like timers after a power outage. Occupancy sensors may turn vending machines on when your building is unoccupied. Your drinks don't need to be chilled when the cleaning crew or security guard walks by your vending machine at night. Thanks to the simple mass remote control with Bert®, your plug loads can easily be part of a load shedding or demand curtailment program.

The Bert® Plug Load Management System

The Bert® family of products includes the Bert® 110, Bert® 110M, Bert® Vend and the Bert® Express Measurement and Verification (EMV) Kit. Each product works seamlessly with the Bertbrain 1000M software application and your Wi-Fi network. By simply plugging your device into the Bert® you can remotely measure, analyze and control all of your plug loads.

Learn more about Bert® visiting www.bertbrain.com.

Measure - Analyze - Control

Manufacturer Specification Sheets

ECM 22: Chiller Replacement

Investment Grade Audit

This page is intentionally left blank.

nit Overview	
Chiller Model	CGAM
Unit Nominal Tonnage	80 tons
Refrigeration Capacity	73.04 tons
Cooling Efficiency	9.539 EER
IPLV.IP	14.60 EER (Btu/W-h)
NPLV.IP	14.35 EER (Btu/W-h)
Elevation	0.000 ft
Unit Frequency	60. hertz
Unit Voltage	460. volt 3 phases
Refrigerant Type	R410A
Number of compressor	4
Number of circuits	2
Number of capacity steps	4
Agency Listing	UL/CUL

Evaporator Inform	nation				
		Evaporator	Application		
		Std co	ooling		
Fluid Tem	peratures	Flow	Rate		
Evaporator Leaving	44.00 F	Design Flow	185.2 gpm		With freeze protection
Evaporator Entering	54.00 F	Min Flow	91.80 gpm	Fouling factor	0.000100 hr-sq ft-deg F/ Btu
Fluid Pr	operties	Max Flow	275.3 gpm	, aming insist	
Fluid Type	Propylene glycol	Fluid Pres	sure Drop	Flow switch set point	Flow switch set point 15 cm/sec
Fluid Concentration	30.00 %	Total PD evap+strainer	19.7 ft H2O	Water connection size	4.000 in
Freeze Point	9.19 F	Design Evap PD	16.5 ft H2O		
		Min PD	5.14 ft H2O		
		May PD	42.2 ft H2O		

ondenser Informa	tion				
Unit Application	High ambient	Fin Material	Microchannel		
Ambient Air Temp.	95.0 F	Total airflow	56645 cfm	Number of Fans	6

Unit Electrical						
Un	it				RLA	LRA
Compressor Starter	Across the line	Incoming Power Line Conn. Type	Single point	Compressor A	33.00 A	215.00 A
Total Power	91.89 kW	Short Circuit Current Option	High	Compressor B	33.00 A	215.00 A
Compressor Power	84.44 kW	Short Circuit Current Rating	65000.00 A	Compressor D	33.00 A	215.00 A
Fan Power	7.130 kW	Single Point Power MCA	162.20 A	Compressor E	33.00 A	215.00 A
Total Fan FLA	20.20 A	Single Point Power MOP	175.00 A			

Dimensions		Weights			Refrigerant Charge	Oil Charge
Length	143.100 in	Operating Weight	4898.7 lb	Circuit 1	45.0 lb	2.91 gal
Width	89.000 in	Shipping Weight 4	4887.6 lb	Circuit 2	45.0 lb	2.91 gal
Height	92.400 in					

Unit Acoustics (A-Weighted)							
A-Weighted	Sound Power	Sound Pressure*	Unit Sound Package				
100%	91 dBA	64 dBA	Comprehensive package				
Note: In Accordance with AHRI 370		*Note: at 30 feet in free field					

Warranty

Standard Warranty

2019-08-21 00:17:53Z Page 1 of 16

Information for LEED Projects

ASHRAE 90.1/CSA compliance ASHRAE 2010

Rated refrigeration capacity (AHRI) 75.20 tons

Rated efficiency (AHRI) 9.750 EER (Btu/W-h)

IPLV.IP 14.60 EER (Btu/W-h)

Cooling Efficiency 9.539 EER

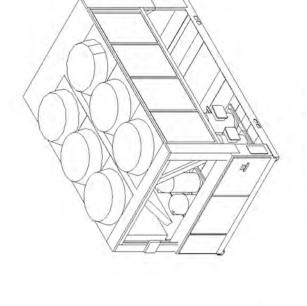
Compress Power 84.44 kW

Fan Power 7.130 kW

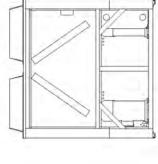
Refrigerant (R410A) - ckt 1 45.0 lb

Refrigerant (R410A) - ckt 2 45.0 lb

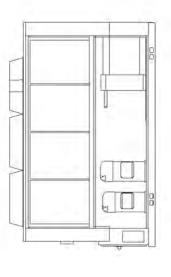
Certified in accordance with the AHRI Air-Cooled Water-Certified in accordance with the AHRI AIR-Cooled Water-Chilling Packages Certification Program, which is based on AHRI Standard 550/590 (I-P) and AHRI Standard 551/591 (SI). Unit contains freeze protection fluids in the evaporator with a leaving chilled fluid temperature above 32°F [0°C] and is certified when rated per the Standard with water. Certified units may be found in the AHRI Directory at www.ahridirectory.org.

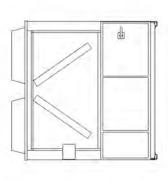

TOPSS Version Number: 227 Data Generation Date: 8/20/2019

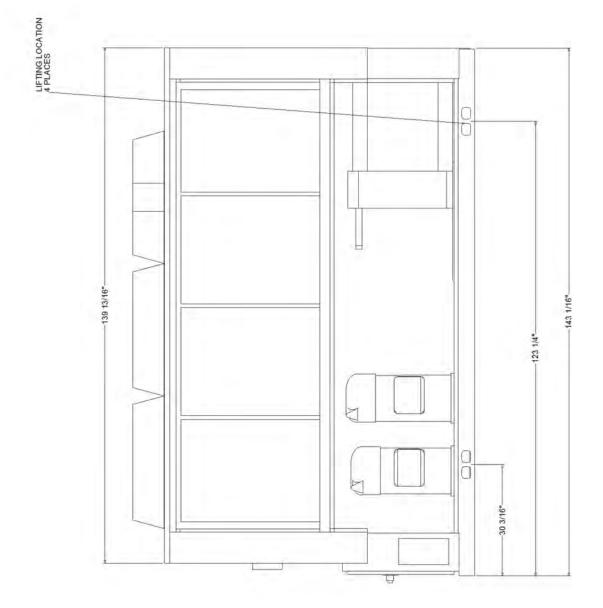
2019-08-21 00:17:53Z Page 2 of 16 ISOMETRIC VIEW

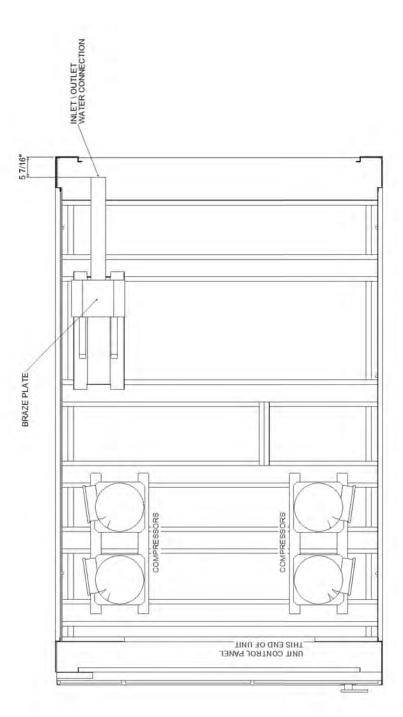


BRAZE PLATE WATER VOLUME/STORAGE

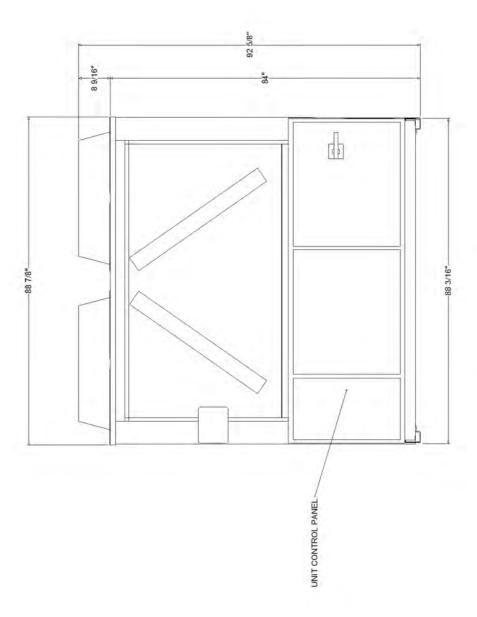



TOP VIEW


BACK VIEW

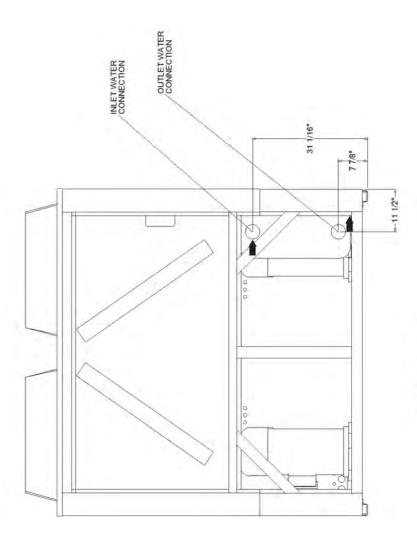

RIGHT SIDE VIEW

FRONT VIEW

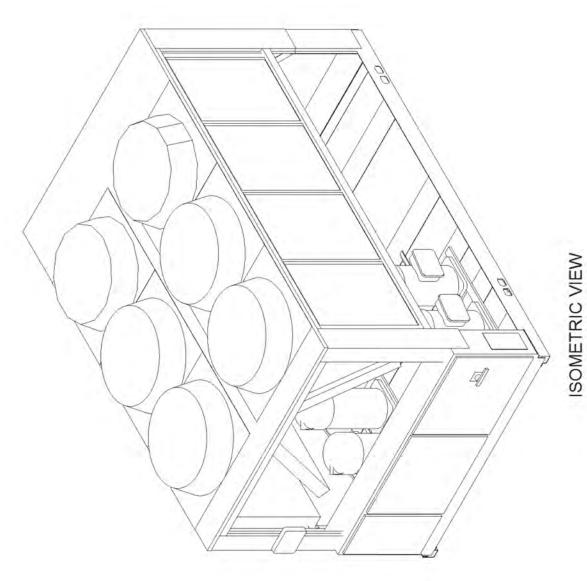


2019-08-21 00:17:54Z Page 4 of 16

TOP VIEW CONDENSER, CONTROL PANEL AND VSD (WHEN ORDERED) REMOVED FOR CLARITY


2019-08-21 00:17:54Z Page 5 of 16

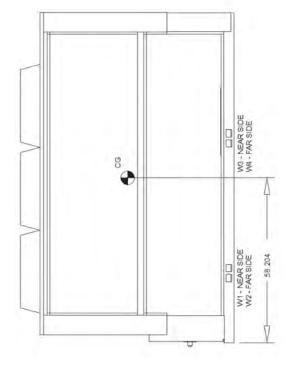
FRONT VIEW

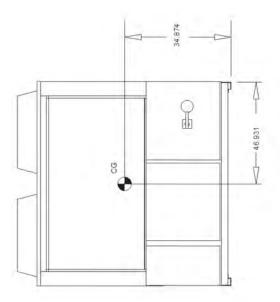

LOUVERED PANELS NOT SHOWN OVER CONTROL PANEL FOR CLARITY

2019-08-21 00:17:54Z Page 6 of 16

BACK VIEW

2019-08-21 00:17:54Z Page 7 of 16

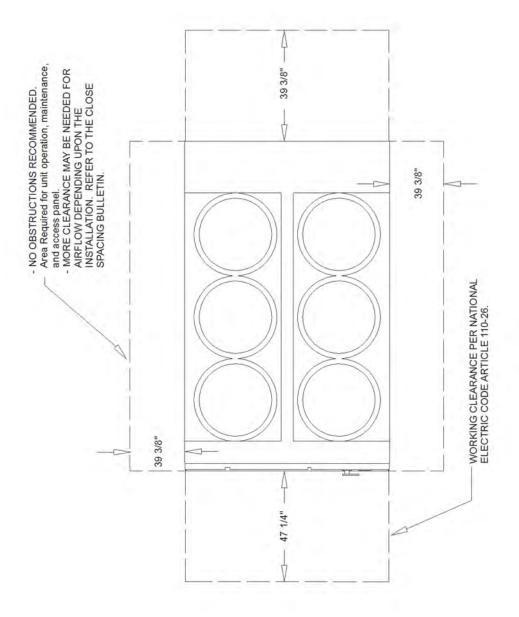



LOUVERED PANELS NOT SHOWN OVER CONTROL PANEL FOR CLARITY

2019-08-21 00:17:54Z Page 8 of 16

UNIT CENTER OF GRAVITY

	1		0	
W1	W2	W3	W4	SHIPPING
625.0	1,791.9	699.7	771.6	4,887.6


SIDE VIEW

FRONT VIEW CONTROL PANEL END

2019-08-21 00:17:54Z

UNIT CLEARANCE

NO OBSTRUCTIONS ABOVE THE CONDENSER

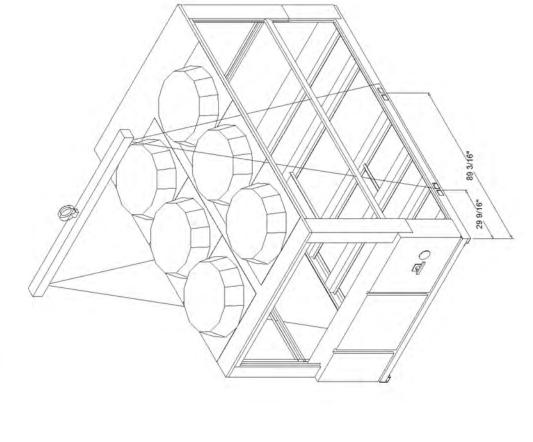
TOP VIEW

UNIT RIGGING

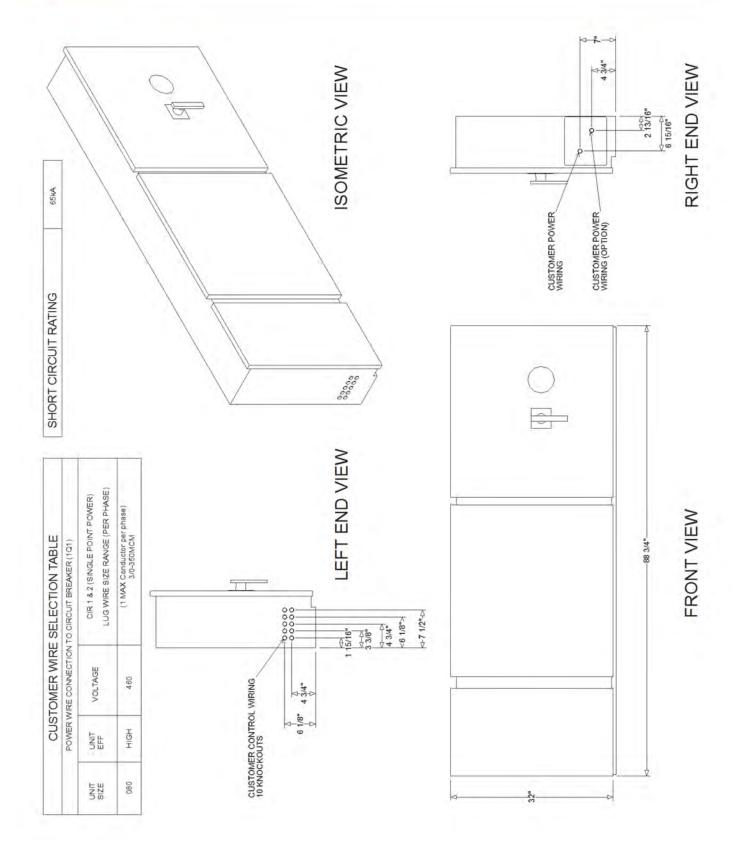
LIFTING A UNIT WITH EQUAL LENGTH STRAPS WILL NOT THE CG WILL NOT BE AT THE MIDPOINT BETWEEN THE BASE LIFTING HOLES. THE FOLLOWING ADJUSTMENTS PRODUCE A LEVEL UNIT DURING THE LIFT BECAUSE MUST BE MADE TO PRODUCE A LEVEL LIFT.

THAN THOSE ON THE OPPOSITE SIDE OF THE SPREADER BAR, ALLOWING THE SPREADER BAR TO MOVE TOWARD THE CONTROL PANEL AND OVER THE UNIT CG. SEVERAL ADJUSTMENTS OF THE STRAP LENGTH MAY BE REQUIRED TO PRODUCE A LEVEL UNIT DURING LIFT. THE STRAPS ON THE CONTROL PANEL SIDE OF THE SPREADER BAR MUST BE ADJUSTED TO BE SHORTER IF THE UNIT CG IS CLOSER TO THE CONTROL PANEL SINGLE SPREADER BAR LIFTING METHOD

IF THE STRAPS FROM THE H BAR TO THE UNIT BASE ARE THE SAME LENGTH, THE CRANE LIFTING POINT ON THE CENTER WEB OF THE H BAR MUST BE ADJUSTED TO - H-TYPE SPREADER BAR LIFTING METHOD PRODUCE A LEVEL UNIT LIFT.

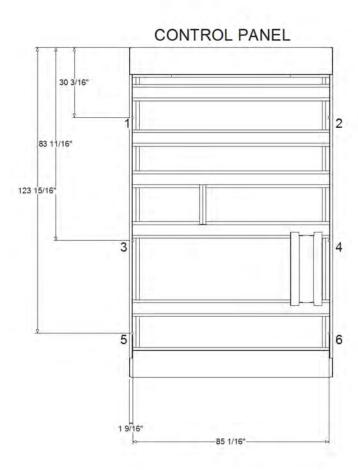

IMPROPER LIFTING AND MOVING!

REFER TO INSTALLATION MANUAL OR NAMEPLATE FOR UNIT WEIGHT. REFER TO INSTALLATION INSTRUCTIONS LOCATED INSIDE CONTROL PANEL USE SPREADER BAR AS SHOWN IN DIAGRAM.


OTHER LIFTING ARRANGEMENTS COULD RESULT IN DEATH, SERIOUS INJURY OR EQUIPMENT

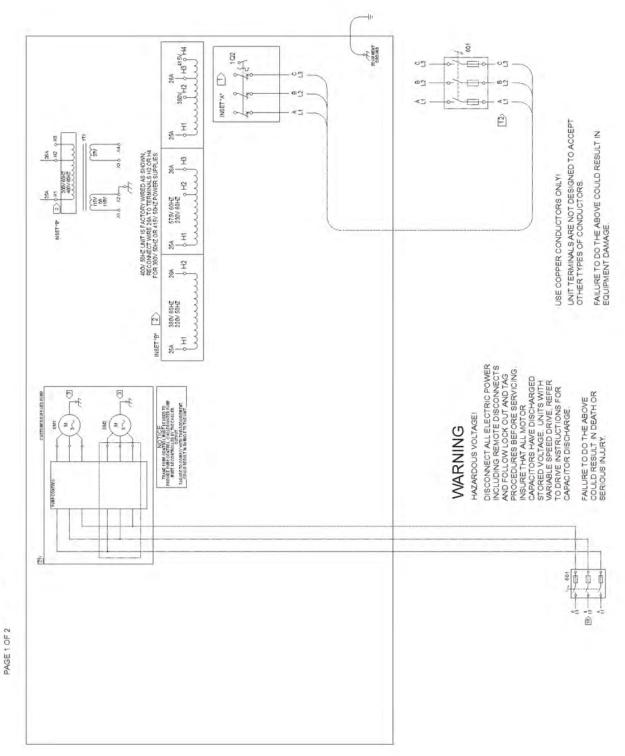
FOR FURTHER RIGGING INFORMATION.

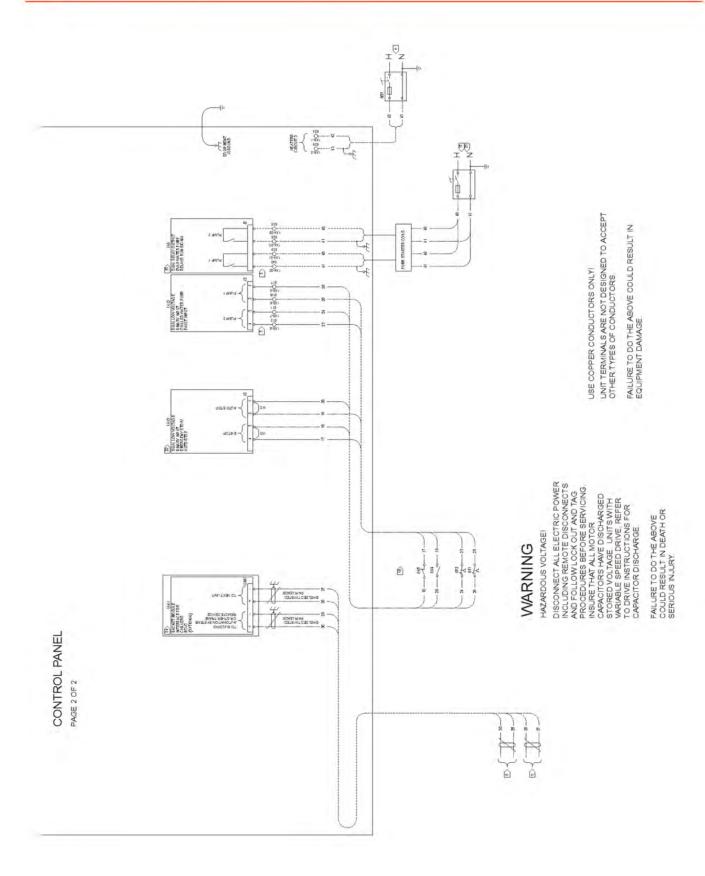
DO NOT ALLOW LIFTING STRAPS TO CONTACT UNIT DURING LIFT!


ISOMETRIC VIEW

UNIT SIZE					WEIGHTS				TOTAL OPERATING WEIGHT
	1	2	3	4	5	6	7	8	1
080	1,159.9	1,613.3	754.9	713.0	339.1	319.0	N/A	N/A	4,898.7

MOUNTING HOLE DIAMETER 3/4"




TOP VIEW
DIMENSIONS ARE REFERENCED FROM
THE END AND SIDE OF THE UNIT BASE

2019-08-21 00:17:54Z Page 13 of 16

CONTROL PANEL

2019-08-21 00:17:54Z Page 15 of 16

1	SINGLE SOURCE POWER IS PROVIDED AS STANDARD ON THESE PRODUCTS, FIELD CONNECTIONS ARE MADE TO 1X1, OR 1Q2.
2	FOR VOLTAGES 200V/60HZ, 220V/50HZ, 380V/60HZ, 460V/60HZ, WIRE 26A SHALL BE CONNECTED TO H2. FOR VOLTAGES 230V/60HZ & 575V/60HZ, WIRE 26A SHALL BE CONNECT TO H3. 400V/50HZ UNIT IS FACTORY WIRED WITH 26A CONNECTED TO H3 RECONNECT WIRE 26A TO H2 FOR 380V/50HZ, OR H4 FOR 415V/50HZ. H4 IS ONLY AVAILABLE WITH 400V/50HZ PANELS.
3	FIELD CONNECTIONS ARE ONLY MADE IN A CUSTOMER PROVIDED PUMP (PTYP=NONE). THESE CONNECTIONS WILL BE MADE BY THE FACTORY WHEN THE PUMP IS PROVIDED BY THE FACTORY (PTYP=DHHP).
4	CUSTOMER SUPPLIED POWER 115/60/1 OR 220/50/1 TO POWER RELAYS. MAX. FUSE SIZE IS 20 AMPS. GROUND ALL CUSTOMER SUPPLIED POWER SUPPLIES AS REQUIRED BY APPLICABLE CODES. GREEN GROUND SCREWS ARE PROVIDED IN UNIT CONTROL PANEL.
5	WIRED TO NEXT UNIT. 22 AWG SHIELDED COMMUNICATION WIRE EQUIVALENT TO HELIX LF22P0014216 RECOMMENDED. THE SUM TOTAL OF ALL INTERCONNECTED CABLE SEGMENTS NOT TO EXCEED 4500 FEET. CONNECTION TOPOLOGY SHOULD BE DAISY CHAIN. REFER TO BUILDING AUTOMATION SYSTEM (BAS) COMMUNICATION INSTALLATION LITERATURE FOR END OF LINE TERMINATION RESISTOR REQUIREMENTS.
6	WIRED TO TRACER OR OTHER TRANE REMOTE DEVICE. 22 AWG SHIELDED COMMUNICATION WIRE EQUIVALENT TO HELIX LF22P0014216 RECOMMENDED. THE SUM TOTAL OF ALL INTERCONNECTED CABLE SEGMENTS NOT TO EXCEED 4500 FEET. CONNECTION TOPOLOGY SHOULD BE DAISY CHAIN. REFER TO BUILDING AUTOMATION SYSTEM (BAS) COMMUNICATION INSTALLATION LITERATURE FOR END OF LINE TERMINATION RESISTOR REQUIREMENTS.
7	WIRED TO CUSTOMER CHILLED WATER SET POINT 2-10V OR 4-20mA
8	WIRED TO CUSTOMER EXTERNAL DEMAND LIMIT 2-10V OR
9	4-20mA. WIRED TO CUSTOMER 2-10V OR 4-20mA % CAPACITY
10>	ANNUNICIATOR. WIRED TO TRACER OR OTHER REMOTE DEVICE.
11.	REFER TO CGAM ELECTRICAL SCHEMATIC FOR SPECIFIC ELECTRICAL CONNECTION INFORMATION AND NOTES PERTAINING TO WIRING INSTALLATION.
12	ALL UNIT POWER WIRING MUST BE 600 VOLT COPPER CONDUCTORS ONLY AND HAVE A MINIMUM TEMPERATURE INSULATION RATING OF 90 DEGREE C. REFER TO UNIT NAMEPLATE FOR MINIMUM GIRCUIT AMPACITY AND MAXIMUM OVERCURRENT PROTECTION DEVICE. PROVIDE AN EQUIPMENT GROUND IN ACCORDANCE WITH APPLICABLE ELECTRIC CODES. REFER TO WIRE RANGE TABLE FOR LUG SIZES.
13.	ALL FIELD WIRING MUST BE IN ACCORDANCE WITH NATIONAL ELECTRIC CODE AND LOCAL REQUIREMENTS.
14.	ALL CUSTOMER CONTROL CIRCUIT WIRING MUST BE COPPER CONDUCTORS ONLY AND HAVE A MINIMUM INSULATION RATING OF 300 VOLTS. EXCEPT AS NOTED, ALL CUSTOMER WIRING CONNECTIONS ARE MADE TO CIRCUIT BOARD MOUNTED BOX LUGS WITH A WIRE RANGE OF 14 TO 18 AWG OR DIN RAIL MOUNTED SPRING FORCE TERMINALS.
15	UNIT PROVIDED DRY CONTACTS FOR THE CONDENSER/CHILLED WATER PUMP CONTROL. RELAYS ARE RATED FOR 7.2 AMPS RESISTIVE, 2.88 AMPS PILOT DUTY, OR \$\frac{1}{4}\$ HP, 7.2 FLA AT 120 VOLTS 60 HZ, CONTACTS ARE RATED FOR 5 AMPS GENERAL PURPOSE DUTY 240 VOLTS.
16	CUSTOMER SUPPLIED CONTACTS FOR ALL LOW VOLTAGE CONNECTIONS MUST BE COMPATABLE WITH DRY CIRCUIT 24 VOLTS DC FOR A 12 mA RESISTIVE LOAD. SILVER OR GOLD PLATED CONTACTS RECOMMENDED.
17>	FIELD CONNECTIONS ARE ONLY MADE IN A CUSTOMER PROVIDED PUMP. THESE CONNECTIONS WILL BE MADE BY THE FACTORY WHEN THE PUMP IS PROVIDED BY THE FACTORY. CUSTOMER SUPPLIED POWER 115V, 60Hz, 1PH.
18	CUSTOMER SUPPLIED 3 PHASE POWER:
19	OPTIONAL FIELD ASSIGNED PROGRAMMABLE RELAYS (STAT=PRLY). CLASS 1 FIELD WIRED MODULE, RELAY AT 120V: 7.2A RESISTIVE 2.88A PILOT DUTY, 1/2 HP 7.2FLA; AT 240VAC: 5 AMPS GENERAL PURPOSE.
20	WIRED TO CUSTOMER 0-10 VDC PUMP SPEED SIGNAL
21>	WHEN FACTORY PROVIDED PUMP IS NOT SELECTED. CUSTOMER MUST SUPPLY SUITABLE PUMP SYSTEM. REFER TO PUMP MANUFACTURER FOR WIRING REQUIREMENTS.
22>	THE CONTACTS FOR AUTO STOP AND EMERGENCY STOP SWITCHES ARE JUMPERED AT THE FACTORY BY JUMPERS WZ & W3 TO ENABLE UNIT OPERATION. IF REMOTE CONTROL IS DESIRED, REMOVED THE JUMPERS AND CONNECT TO THE DESIRED CONTROL CIRCUIT.
23	1A15, LCI MODULE USED WHEN (COMM = LCI).
24	1A41, BACNET INTERFACE MODULE USED WHEN (COMM = BCNT).

2019-08-21 00:17:54Z Page 16 of 16

Manufacturer Specification Sheets

ECM 23: Siding Replacement

Investment Grade Audit

This page is intentionally left blank.

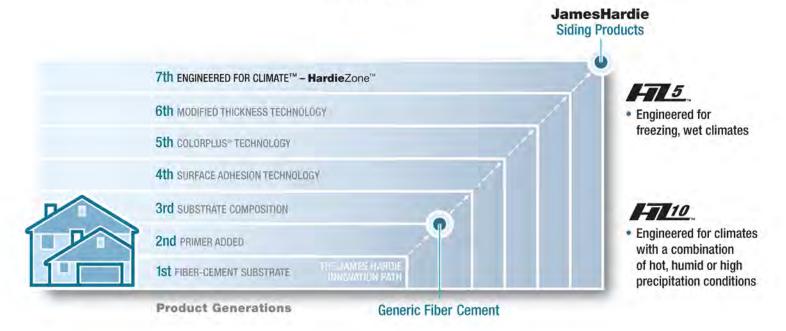
Transform Your Home Into Your Dream Home

Siding

Trim

Soffit

Weather Barrier



James Hardie® Siding Products

HardieZone™ System

Your home's exterior says a lot about you. Unfortunately, Mother Nature doesn't care. Whether it's sheets of rain, dry heat, freezing temperatures, ice and snow, or hurricane force winds, siding is under constant attack. That's why for more than three decades, James Hardie has continued to push back on everything Mother Nature could dish out. Four million beautiful homes stand as a testament to our persistence. And as the most trusted brand of siding in America, James Hardie has taken that level of defense to an even higher level, with siding that's engineered for climate. We call it The HardieZone™ System.

James Hardie has always been ahead of the siding curve. With the development of the HardieZone™ System, that gap has grown wider. James Hardie's commitment to Research & Development has led to our seventh generation of product advancement, which is the highest performing fiber cement siding in the industry. The HardieZone™ System represents a logical extension of Hardie technology: "one size does not fit all."

Our best warranty ever. Unprecedented peace of mind.

We're so confident The HardieZone™ System can withstand the rigors of the North American climate we're offering our strongest warranty. This outstanding 30-year limited, transferable warranty offers non-prorated product coverage for the entire 30 years. That's the type of peace of mind homeowners have asked for.

James Hardie® Siding Products

HardieZone™ System

For the first time ever, you can have the ideal home exterior for your local climate. So say goodbye to the days of one-siding-fits-all. It's a given that siding must stand up to the elements. That's why we based the HardieZone™ System on the eight individual climatic variables that primarily affect long-term performance of siding.

- Zones 1-5■ Zones 6-10
- Using these factors we arrived at these distinct climatic zones. Though different, we found common variables in certain regions, allowing us to engineer one product line for zones 1 through 5, and another product line for zones 6 through 10.


HZ10™ Product

Even when Mother Nature isn't very motherly, the HZ10[™] product line delivers legendary James Hardie durability. This siding was engineered for areas with hurricane-force winds, salty sea air of the coast, and the brutal, humid heat of the Deep South. Engineered specifically for this climate, HZ10[™] boards resist cracking, splitting, rotting and swelling season after hot, humid, tropical storm season. Our latest breakthrough in performance enhancement is our new distinctive primer. The unique primer outperforms generic fiber cement primer with improved paint adhesion and moisture resistance and is developed for the wide range of field paint products that are available. The new look of the primer will also distinguish your job sites and separate you from builders who use generic fiber cement. Standard manufacturer recommended field paint application methods will be able to sufficiently hide the primer and it will not affect the appearance of your paint.

HZ5™ Products

The HZ5™ product line is right at home in climates with freezing temperatures, extreme seasonal temperature variations, and snow and ice. To ensure its beauty matches its durability, we've engineered the surface for higher performance, giving it superior paint adhesion and moisture resistance. So you aren't getting an exterior that just performs well in cold, nasty climates. You're getting an exterior engineered just for it.

James Hardie® Complete Exterior

Would you ever buy half a home?

Of course not. While there are other options of siding, only James Hardie provides a complete line of siding products including soffit, trim, and fascia that are all engineered for your specific climate. Each component kept beautiful for decades with a factory-applied, baked-on coating of paint that was engineered to stand up to the high UV levels that fade most field-applied paints in just a few short years. Only James Hardie siding with ColorPlus® Technology offers you this kind of complete siding solution. It's beauty without a timetable. It's character with low maintenance. It's peace of mind you won't find anywhere else.

James Hardie® Siding Products with ColorPlus® Technology

Your home should re ect your personal style and taste. That's why architectural design and color have become more important when building or re-siding a home. Utilizing James Hardie® siding with ColorPlus® Technology on your home allows you to maximize these opportunities. James Hardie siding with ColorPlus Technology is an innovative product with a baked-on finish, providing unprecedented color consistency in a wide range of colors. When the painting of your home is left to painting on-site you can not be assured of a quality and consistent finish. However products with ColorPlus Technology provide you years of lasting beauty and peace of mind with a 15-year finish warranty.

ColorPlus® Technology	Painting On-Site		
Fully engineered complete coating system	Paint out of a can		
Color coating specifically formulated for use with James Hardie siding products – Revolutionary formulation unlike anything available in stores	Paint generically formulated for any surface or weather conditions reduces performance		
Environmentally controlled, baked on finish applied in the factory	Field spray impacted by weather conditions – Temperature, moistur dirt, wind. Too many variables		
Multi-coat (more than 2) complete coating system	Generally 1 or 2 coats		
Fade resistant – Up to 30% better than field spray*	Fades at a greater rate — Dependant upon quality of paint used		
Highest level of consistency — Colors computer matched more precisely than the auto re-finishing industry! Twice as good as the human eye, 3 times better than paint off the shelf	5 cans of paint = 5 slightly different shades		
Single source warranty – Siding and color coating	Separate warranty that varies by paint manufacturer		
Saves approximately \$5000 over next 8 years	Typically repainted in 7-8 years		

^{*}James Hardie accelerated QUV test results compared to nationally available premium paint in lab environment.

Here's to a Lifetime of Beautiful First Impressions.

James Hardie combines innovative solutions with a relentless commitment to increase the value and character of your home, so that we can give you confidence to make your vision possible.

Whether you prefer a traditional exterior with HardiePlank® lap siding, or the unique look of HardieShingle® siding or Board & Batten, James Hardie will provide the design options you need to increase curb appeal and create a lasting impression.

HardiePlank* Siding & HardieShingle* Siding (Plank-Chestnut Brown & Countrylane Red)

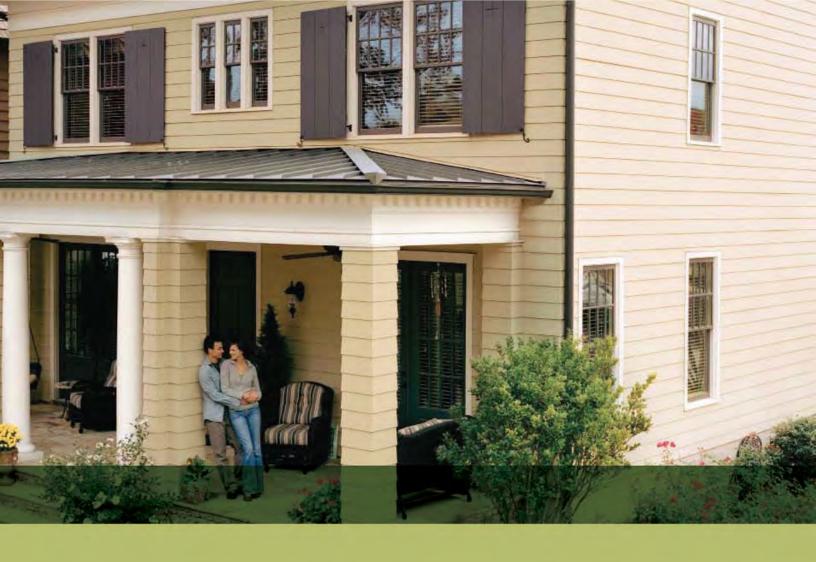
HardiePanel* Siding & HardieTrim* Boards (Panel-Countrylane Red, Trim-Arctic White)

HardiePlank *Siding & HardieTrim *Boards (Plank-Heathered Moss, Trim-Arctic White)

HardieShingle® Siding -Straight Edge & HardiePlank® Siding (Plank-Tuscan Gold, Shingle-Monterey Taupe)

Whether you are considering building a new home or remodeling you current home, make sure you consider James Hardie® Siding with ColorPlus® Technology — The #1 Return on Your Remodeling Investment.

HardiePanel* Siding & HardieTrim* Batten Boards (Navajo Beige)


HardiePlank[®] Siding & HardieTrim[®] Boards (Plank-Woodland Cream, Trim-Arctic White)

HardiePlank*Lap Siding (Woodstock Brown)

HardieShingle® Siding -Staggered Edge (Boothbay Blue)

James Hardie® Siding Products are rare in that they combine beauty and durability and also are considered "Green and Sustainable" by industry professionals.

To find your HardieZone™ visit www.hardiezone.com or call 1-866-9HARDIE (1-866-942-7343)

James Hardie® Siding Comparison Chart

For real value, wood and wood composite siding products don't cut it.

Wood makes a great first impression. But what you really want is a great first impression that lasts. While all wood and wood composite siding starts out looking good, they don't stay that way.

That's why more and more homeowners across America are turning to James Hardie® siding products with ColorPlus® Technology, which combine the beauty and character of wood with the durability and low maintenance of fiber-cement.

[†] James Hardie accelerated QUV tests results compared to nationally available premium paint in lab environment.

James Hardie® Siding Comparison Chart

Why Settle for Vinyl?

Don't let vinyl siding companies pull the plastic over your eyes. Thin, unnatural vinyl siding can't provide the rich wood grain finishes that give your home real lasting curb appeal.

To give your home the beauty and charm of a natural wood texture with unsurpassed durability, choose James Hardie[®] fiber cement siding with ColorPlus[®] Technology.

Which Siding Would You Rather Have Protecting Your Home? James Hardie® Siding Products VS. Vinyl Siding with ColorPlus® Technology James Hardie siding is Vinyl siding will melt or noncombustible. burn when exposed to Flame Approved for fire-rated a significant source of Resistance construction. heat or flame. Color can't be changed Factory applied, baked and is susceptible to on paint finish provides Fade fading. Fades at noticeably up to 30% better Resistance different rates, creating fade resistance than color inconsistency. competitive products.† Can become brittle when Resists rotting, warping, exposed to extremely Weather cracking, hail, and high cold weather. Easily Resistance winds up to 150 mph. damaged by hail, limbs, and other flying debris. James Hardie siding is Even premium vinyl siding is only 5/100" thick. twice as thick as vinyl, **Appearance** Unnatural, imitation-wood providing deeper shadow look completely lacks lines and a more natural wood grain texture. character and curb appeal.

[†] James Hardie accelerated QUV tests results compared to nationally available premium paint in lab environment.

Names "Upscale" siding Your #1 Investment

- Remodeling magazine

For the 4th Year in a Row, Re-Siding Your Home with James Hardie® Fiber Cement is the #1 Return on Investment

Re-side with James Hardie® Fiber Cement Siding—The Best Choice.

Project	2008 Rank	2007 Rank	2006 Rank	2005 Rank
Siding Replacement - Fiber Cement	1	1	1	1
Mid Range Bathroom Remodel (Update an existing 5' x 7' bathroom)	11	6	4	2
Minor Kitchen remodel (replace wall oven and cook top with energy efficient models)	5	3	7	3
Two-Story Addition (Add a first-floor family room and a second-floor bedroom with full bath)	16	10	6	5

2008 Hanley Wood, L.L.C. Excerpted by permission. Complete data from the Remodeling 2008 Cost vs. Value Report is available at www.costvsvalue.com

A Smart Investment

The Pros Know

There are many other projects you can tackle, but only re-siding with fiber cement gives you the best return on your investment 4 years in a row.

- Residing with fiber cement gives a 31% better return than adding a bathroom and costs \$61k less to complete
- Minor kitchen remodel gives you a 10% less return on investment than re-siding with fiber cement
- Adding a second story addition nets you 23% less return on investment than fiber cement re-siding

Remodeling magazine is the industry's leading home improvement magazine. Since 1988, Remodeling magazine's Cost vs. Value Report has compared construction costs for common remodeling projects with the value they add to a home at resale in the current real estate market. The results – upscale siding projects using fiber-cement return the highest value at resale.

Manufacturer Specification Sheets

ECM 24: Roof Replacement

Investment Grade Audit

This page is intentionally left blank.

JM EPDM NR 60 mil

Ethylene Propylene Diene Monomer Membrane

Meets the requirements of ASTM D 4637, Type I

Features and Components

Membrane: Nonreinforced, cured EPDM (ethylene propylene diene monomer).

Fully Extruded: Produces fewer air voids, more uniform thickness and smoother sheets.

Vulcanization Process: Combines two layers of membrane to produce a fully cross-linked monolithic membrane.

Membrane Formulation: Performs in extreme temperature climates and withstands differential movement (elongation).

UV-Stabilization Properties: Offers outstanding ozone and weather resistance delivering one of the longest service lives available.

Technical Expertise: Backed by 30+ years of EPDM experience and installations.

Color

Black

System Compatibility This product may be used as a component in the following systems. Please reference product application for specific installation methods and information.

立			DIM
Single P	TA: NO.	OLD TOUR	A BA
S.	Compatible with the select	ted Single Ply systems	above
SA = Self Adhered	MF = Mechanically Fastened	FA = Fully Adhered	BA = Ballaster

Energy and the Environment

Property	Value	
Reflectivity* (ASTM C 1549)	0.06	
Emissivity* (ASTM C 1371)	0.88	
Post-consumer Recycled Content	0%	
Pre-Consumer Recycled Content	0%	

^{*}Test methods for reflectivity and emissivity are LEED®- and CRRC®-approved.

Peak Advantage® Guarantee Information

Enhanced guarantees are now available on certain systems for wind and puncture. Consult your local sales representative for more information and for specific guarantee terms and costs.

Product	Guarantee Term
When used in most JM EPDM Systems*	Up to 20 years

^{*}Contact JM Technical Services for specific systems.

Codes and Approvals

Installation/Application

lasted Full

Refer to JM EPDM Application Guides and Detail Drawings for instructions.

Packaging and Dimensions

Roll Size	Roll Coverage		
10' x 50' (3.05 m x 15.24 m)	500 ft² (46.5 m²)		
10'x100' (3.05 m x 30.48 m)	1000 ft ² (92.9 m ²)		
16' 8" x 100' (5.08 m x 30.48 m)	1667 ft² (154.8 m²)		
20' x 50' (6.1 m x 15.24 m)	1000 ft² (92.9 m²)		
20'x 100' (6.1 m x 30.48 m)	2000 ft ² (185.8 m ²)		
30' x 100' (9.14 m x 30.48 m)	3000 ft² (278.7 m²)		
40' x 100' (12.19 m x 30.48 m)	4000 ft² (371.9 m²)		
Extruded in:	Milan, OH		

JM EPDM NR 60 mil

Ethylene Propylene Diene Monomer Membrane

Meets the requirements of ASTM D 4637, Type I

Tested Physical Properties

Physic	al Properties	ASTM Test Method	Standard for ASTM D 4637, Type I	JM EPDM – NR 60 mil
Strength	Tensile Strength (psi)	D 412	>= 1305	1456
	Elongation, Ultimate (%)	D 412	>=300	411
	Tensile Set (%)	D 412	<=10	0.5
	Tear Resistance (lbf/in.)	D 624	>= 150	181
	Dynamic Puncture Resistance, 5J, Type I	D 5635	pass	pass
	Static Puncture Resistance, 44.1 lbf, Type I	D 5602	pass	pass
20	Overall Sheet Thickness (in.)	D 751	+/- 10%	pass
evity	Brittleness Point (°F)	D 2137	<= -49	pass
Longevity	Ozone Resistance	D 1149	pass	pass
	Water Absorption (mass %)	D 471	<=8	0.3
	Heat Aged 670 hrs @ 240°F	D 573		
nce led	Tensile Strength (psi)	D 412	>= 1205	1450
Heat Aged Performance	Elongation, Ultimate (%)	D 412	>= 200	403
Per He	Tear Resistance (lbf/in.)	D 624	>=125	170
	Linear Dimensional Change (%)	D 1204	<+/-1	0.4
ing ing	Weathering Resistance, 5040 KJ/(m2-nm) @ 340 nm	D 4637 / G 151 / G 155		
Weathering	Visual Inspection	il e e e	pass	pass
Perf	Elongation, Ultimate (%)	D 412	>= 200	351

Royal Sovereign® Specs

ABOUT (HTTPS://WWW.GAF.COM/EN-US/PRODUCTS/ROYAL-SOVEREIGN) SPECS (HTTPS://WWW.GAF.COM/EN-US/PRODUCTS/ROYAL-SOVEREIGN/SPECIFICATIONS) DOCS
(HTTPS://WWW.GAF.COM/EN-US/PRODUCTS/ROYAL-SOVEREIGN/DOCUMENTS) VIDEOS (HTTPS://WWW.GAF.COM/EN-US/PRODUCTS/ROYAL-SOVEREIGN/VIDEOS)

SPECIFICATIONS 1

AWARDS & RECOGNITION	Good Housekeeping Rated
DIMENSIONS (SP)	12" x 36" (304.8 mm x 914.4 mm)
STAINGUARD®	Yes
ALGAE STAIN PROTECTION	StainGuard® Protection
BUNDLE COVERAGE	3 bundles per square
APPROX. NAILS/SQ	316
s - ssss	\$
DURABILITY & TOUGHNESS	Advanced Protection Shingle with GAF Dura Grip Adhesive
EXPOSURE	5" (127 mm)
EXTREME WEATHER IMPACT RATED	No
FIRE RATING	Highest Rating - Class A
MATERIAL	Fiberglass Asphalt Construction
WIND WARRANTY	60 mph
WIND RATING	60 mph
ARCHITECTURAL STYLE	Three-Tab
SHINGLE STYLE	3-Tab Shingles
SHINGLE TYPE	3-Tab Shingles
AWARDS & RECOGNITIO	N:Good Housekeeping Rated

SPECIFICATIONS

STAINGUARD®:Yes

ALGAE STAIN PROTECTION:StainGuard® Protection

BUNDLE COVERAGE:3 bundles per square

APPROX. NAILS/SQ:316

\$ - \$\$\$\$:\$

DURABILITY & TOUGHNESS:Advanced Protection Shingle with GAF Dura Grip Adhesive

EXPOSURE:5" (127 mm)

EXTREME WEATHER IMPACT RATED:No

FIRE RATING: Highest Rating - Class A

MATERIAL:Fiberglass Asphalt Construction

WIND WARRANTY:60 mph

WIND RATING:60 mph

ARCHITECTURAL STYLE: Three-Tab

SHINGLE STYLE:3-Tab Shingles

SHINGLE TYPE:3-Tab Shingles

CODES & APPLICABLE STANDARDS

FBC	State of Florida approved
ICC	ESR-1475
MIAMI-DADE COUNTY	Miami-Dade County Product Control approved
TDI	Texas Department of Insurance listed

FBC:State of Florida approved

ICC: ESR-1475

MIAMI-DADE COUNTY: Miami-Dade County Product Control approved

TDI:Texas Department of Insurance listed

TESTING METHODS

|--|

TESTING METHODS

ASTM D3161	Class F	
ASTM D3462	Yes - Meets ASTM D3462	
ASTM D7158	Class H	
TAS 100-95	Yes	
UL 790	Class A	
ASTM D3018: Type 1		
ASTM D3161:Class F		
ASTM D3462:Yes - Meets ASTM D3462		
ASTM D7158:Class H		
TAS 100-95:Yes		
UL 790 :Class A		

ENERGY RATING

ENERGY STAR® CERTIFIED (U.S. ONLY)	No
TITLE 24 (CALIFORNIA ENERGY COMMISSION)	No
CRRC	Yes (White, Desert Sand only)
LA GREEN BUILDING CODE	Yes (White, Desert Sand only) - Meets the Los Angeles Green Building Code
MIAMI 21 (FLORIDA BUILDING CODE)	Yes (White, Desert Sand only)

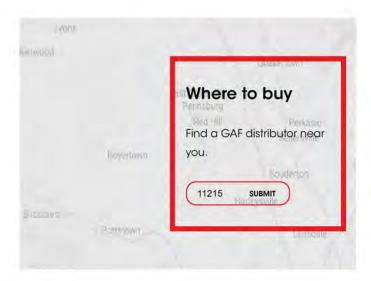
ENERGY STAR® CERTIFIED (U.S. ONLY):No

TITLE 24 (CALIFORNIA ENERGY COMMISSION):No

CRRC:Yes (White, Desert Sand only)

LA GREEN BUILDING CODE:Yes (White, Desert Sand only) - Meets the Los Angeles Green Building Code

MIAMI 21 (FLORIDA BUILDING CODE):Yes (White, Desert Sand only)


SHIPPING AND PACKAGING

APPROX. PIECES/SQ	79
APPROX. BUNDLES/SQ	3

SHIPPING AND PACKAGING

APPROX. PIECES/SQ:79

APPROX. BUNDLES/SQ:3

Get automatic Lifetime Protection on your entire GAF roofing system

When you install any GAF Lifetime Shingle and at least 3 qualifying GAF accessories, you'll automatically get a Lifetime limited warranty on your shingles and all qualifying GAF accessories*.

CONTACT:

AMERESCO, INC. 111 SPEEN STREET, SUITE 410 FRAMINGHAM, MA 01701 T: (508) 661-2200

MATTHEW FURDYNA ACCOUNT EXECUTIVE

T: (508) 598-3045

E: MFURDYNA@AMERESCO.COM

